Cerebellar granule cell (Masoli et al 2020)

 Download zip file 
Help downloading and running models
Accession:265584
"The cerebellar granule cells (GrCs) are classically described as a homogeneous neuronal population discharging regularly without adaptation. We show that GrCs in fact generate diverse response patterns to current injection and synaptic activation, ranging from adaptation to acceleration of firing. Adaptation was predicted by parameter optimization in detailed computational models based on available knowledge on GrC ionic channels. The models also predicted that acceleration required additional mechanisms. We found that yet unrecognized TRPM4 currents specifically accounted for firing acceleration and that adapting GrCs outperformed accelerating GrCs in transmitting high-frequency mossy fiber (MF) bursts over a background discharge. This implied that GrC subtypes identified by their electroresponsiveness corresponded to specific neurotransmitter release probability values. Simulations showed that fine-tuning of pre- and post-synaptic parameters generated effective MF-GrC transmission channels, which could enrich the processing of input spike patterns and enhance spatio-temporal recoding at the cerebellar input stage."
Reference:
1 . Masoli S, Tognolina M, Laforenza U, Moccia F, D'Angelo E (2020) Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun Biol 3:222 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s): Ca pump; I Na, leak; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Calcium dynamics; Synaptic Integration;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; AMPA; NMDA; I Calcium; I Na, leak; Ca pump;
/
Granule_cell_2020
01_GrC_2020_regular
mod_files
cdp5_CR.mod *
GRANULE_Ampa_det_vi.mod *
GRANULE_Nmda_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
GRC_NA.mod *
GRC_NA_FHF.mod *
Kca11.mod *
Kca22.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv22.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        CaHVA channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX GRC_CA 
	USEION ca READ eca WRITE ica 
	RANGE gcabar, ica, g, alpha_s, beta_s, alpha_u, beta_u 
	RANGE Aalpha_s, Kalpha_s, V0alpha_s
	RANGE Abeta_s, Kbeta_s, V0beta_s
	RANGE Aalpha_u, Kalpha_u, V0alpha_u
	RANGE Abeta_u, Kbeta_u, V0beta_u
	RANGE s_inf, tau_s, u_inf, tau_u 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
:Kalpha_s = 0.063 (/mV)  Checked!
:Kbeta_s = -0.039 (/mV) Checked!
:Kalpha_u = -0.055 (/mV) Checked!
:Kbeta_u = 0.012 (/mV) Checked!


	Aalpha_s = 0.04944 (/ms)
	Kalpha_s =  15.87301587302 (mV)
	V0alpha_s = -29.06 (mV)
	
	Abeta_s = 0.08298 (/ms)
	Kbeta_s =  -25.641 (mV)
	V0beta_s = -18.66 (mV)
	
	

	Aalpha_u = 0.0013 (/ms)
	Kalpha_u =  -18.183 (mV)
	V0alpha_u = -48 (mV)
		
	Abeta_u = 0.0013 (/ms)
	Kbeta_u =   83.33 (mV)
	V0beta_u = -48 (mV)

	v (mV) 
	gcabar= 0.00046 (mho/cm2) 
	eca = 129.33 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	s 
	u 
} 

ASSIGNED { 
	ica (mA/cm2) 
	s_inf 
	u_inf 
	tau_s (ms) 
	tau_u (ms) 
	g (mho/cm2) 
	alpha_s (/ms)
	beta_s (/ms)
	alpha_u (/ms)
	beta_u (/ms)
} 
 
INITIAL { 
	rate(v) 
	s = s_inf 
	u = u_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gcabar*s*s*u 
	ica = g*(v - eca) 
	alpha_s = alp_s(v)
	beta_s = bet_s(v)
	alpha_u = alp_u(v)
	beta_u = bet_u(v)
}
 
DERIVATIVE states { 
	rate(v) 
	s' =(s_inf - s)/tau_s 
	u' =(u_inf - u)/tau_u 
} 
 
FUNCTION alp_s(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_s = Q10*Aalpha_s*exp((v-V0alpha_s)/Kalpha_s) 
} 
 
FUNCTION bet_s(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_s = Q10*Abeta_s*exp((v-V0beta_s)/Kbeta_s) 
} 
 
FUNCTION alp_u(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_u = Q10*Aalpha_u*exp((v-V0alpha_u)/Kalpha_u) 
} 
 
FUNCTION bet_u(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_u = Q10*Abeta_u*exp((v-V0beta_u)/Kbeta_u) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_s, b_s, a_u, b_u 
	TABLE s_inf, tau_s, u_inf, tau_u 
	DEPEND Aalpha_s, Kalpha_s, V0alpha_s, 
	       Abeta_s, Kbeta_s, V0beta_s,
               Aalpha_u, Kalpha_u, V0alpha_u,
               Abeta_u, Kbeta_u, V0beta_u, celsius FROM -100 TO 30 WITH 13000 
	a_s = alp_s(v)  
	b_s = bet_s(v) 
	a_u = alp_u(v)  
	b_u = bet_u(v) 
	s_inf = a_s/(a_s + b_s) 
	tau_s = 1/(a_s + b_s) 
	u_inf = a_u/(a_u + b_u) 
	tau_u = 1/(a_u + b_u) 
}


Loading data, please wait...