ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/266851.

Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
DuraBernal
mod
ar_traub.mod *
cadad.mod *
cadyn.mod *
cagk.mod *
cal_mh.mod *
cal_mig.mod *
can_mig.mod *
canin.mod *
cat_mig.mod *
cat_traub.mod *
catcb.mod *
gabab.mod *
h_BS.mod *
h_harnett.mod
h_kole.mod *
h_migliore.mod *
HCN1.mod *
hin.mod *
IC.mod *
ican_sidi.mod *
IKsin.mod *
kap_BS.mod *
kapcb.mod *
kapin.mod *
kBK.mod *
kctin.mod *
kdmc_BS.mod *
kdr_BS.mod *
kdrin.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafx.mod *
nap_sidi.mod *
nax_BS.mod *
savedist.mod *
vecstim.mod *
ghk.inc *
misc.h
parameters.multi *
                            
TITLE I-h channel from Magee 1998 for distal dendrites
: modified to take into account Sonia's exp. Apr.2008 M.Migliore
: thread-safe 2010-05-18 Ben Suter
: 2010-11-07 Ben Suter, removing "hd" from parameter names, changing suffix from "hd" to "h"
: Parameters fit to pre-ZD current-clamp step responses from experiment BS0284 (traces and reconstruction from single corticospinal neuron)
: 2011-09-18 Ben Suter, set default parameter values to those found from MRF optimization for BS0284 model
:
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
: Copyright 2011, Benjamin Suter (for changes only)
: Used in model of corticospinal neuron BS0284 and published as:
:  "Intrinsic electrophysiology of mouse corticospinal neurons: a characteristic set of features embodied in a realistic computational model"
:  by Benjamin Suter, Michele Migliore, and Gordon Shepherd
:  Submitted September 2011
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
}

PARAMETER {
    v                       (mV)
    celsius  = 34.0    (degC)
    erev     = -37.0               (mV)
    gbar     = 0.0001       (mho/cm2)
    vhalfl   = -78.474      (mV)    : was -81
    kl       = -6                   : was -8
    vhalft   = -66.139      (mV)    : was -62
    a0t      = 0.009        (/ms)   : was 0.0077696
    zetat    = 20           (1)     : was 5
    gmt      = 0.01         (1)     : was 0.057127
    q10      = 4.5
    qtl      = 1
    taumin	= 2.0	(ms)		: minimal value of time constant
}

NEURON {
    SUFFIX h
    NONSPECIFIC_CURRENT i
    RANGE gbar, vhalfl
    RANGE linf, taul, g
    GLOBAL taumin
}

STATE {
    l
}

ASSIGNED {
    i       (mA/cm2)
    linf
    taul
    g
}

INITIAL {
    rate(v)
    l       = linf
}

BREAKPOINT {
    SOLVE states METHOD cnexp
    g       = gbar*l
    i       = g*(v-erev)
}

FUNCTION alpt(v(mV)) {
    alpt    = exp(0.0378*zetat*(v-vhalft))
}

FUNCTION bett(v(mV)) {
    bett    = exp(0.0378*zetat*gmt*(v-vhalft))
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
    rate(v)
    l'      = (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
    LOCAL a,qt
    qt      = q10^((celsius-33)/10)
    a       = alpt(v)
    linf    = 1/(1 + exp(-(v-vhalfl)/kl))
    taul    = bett(v)/(qtl*qt*a0t*(1+a)) + 1e-8 
    if(taul < taumin) { taul = taumin } 	: min value of time constant
}

Loading data, please wait...