Coincidence detection in MSO principal cells (Goldwyn et al. 2019)

 Download zip file 
Help downloading and running models
Accession:266961
How a particular combination of anatomical and biophysical properties results in a short integration window (good for detection of closely-coincident inputs) while also enabling efficient axonal firing with brief interspike intervals (needed to faithfully report a series of coincidences between high frequency presynaptic spike trains).
Reference:
1 . Goldwyn JH, Remme MWH, Rinzel J (2019) Soma-axon coupling configurations that enhance neuronal coincidence detection. PLoS Comput Biol 15:e1006476 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Auditory brainstem;
Cell Type(s): Medial Superior Olive (MSO) cell;
Channel(s): I Sodium; I_KLT;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Coincidence Detection; Synaptic Integration; Two-port analysis of electrotonus; Voltage transfer ratio; Equivalent PI circuit; Excitability;
Implementer(s): Goldwyn, Joshua [jhgoldwyn at gmail.com];
Search NeuronDB for information about:  I Sodium; I_KLT;
 
/
TwoCompartmentModel-master
ReadMe.md
CarneyModel.m
EasyRun.m
getParam.m
LICENSE *
passiveParamFig.m
ResponseToAN.m
ResponseToEPSGpair.m
ResponseToRamp.m
ResponseToStep.m
TwoCptAN_func.m
TwoCptANode.m
TwoCptODE.m
                            
File not selected

<- Select file from this column.
Loading data, please wait...