ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/267106.

DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, 2021)

 Download zip file 
Help downloading and running models
Accession:267106
GABA can depolarize immature neurons close to the action potential (AP) threshold in development and adult neurogenesis. Nevertheless, GABAergic synapses effectively inhibit AP firing in newborn granule cells of the adult hippocampus as early as 2 weeks post mitosis. Parvalbumin and dendrite-targeting somatostatin interneurons activate a5-subunit containing GABAA receptors (a5-GABAARs) in young neurons, which show a voltage dependent conductance profile with increasing conductance around the AP threshold. The present computational models show that the depolarized GABA reversal potential promotes NMDA receptor activation. However, the voltage-dependent conductance of a5-GABAARs in young neurons is crucial for inhibition of AP firing to generate balanced and sparse firing activity.
Reference:
1 . Lodge M, Hernandez MC, Schulz JM, Bischofberger J (2021) Sparsification of AP firing in adult-born hippocampal granule cells via voltage-dependent a5-GABAA receptors Cell Reports [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s): I K; I Krp; I Na,t;
Gap Junctions:
Receptor(s): AMPA; GabaA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Development; Neurogenesis; Pattern Separation; Synaptic Integration;
Implementer(s): Schulz, Jan M [j.schulz at unibas.ch]; Bischofberger, Josef;
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; GabaA; AMPA; NMDA; I Na,t; I K; I Krp; Gaba; Glutamate;
// insert GC channels
proc insert_Nav() {local gbar_Na_axon, gbar_Na_ais, gbar_Na_soma, gbar_Na_dend 
  gbar_Na_axon = $2
  gbar_Na_ais = $1
  gbar_Na_soma = $3
  gbar_Na_dend = $4
  forall {insert na8st gbar_na8st=0 vShift_na8st=$5 kinfact_na8st=$6 ena=60}
  forsec "soma" {gbar_na8st= gbar_Na_soma } 
  forsec "dendrite" {gbar_na8st= gbar_Na_dend}	
  if (axonGC) {
	AIS			{gbar_na8st= gbar_Na_ais }  	
	axon		{gbar_na8st= gbar_Na_axon}  	
  }
}

proc insert_Nav_mature() {local gbar_Na_axon, gbar_Na_ais, gbar_Na_soma, gbar_Na_dend 
  gbar_Na_axon = $2
  gbar_Na_ais = $1
  gbar_Na_soma = $3
  gbar_Na_dend = $4
  forsec "soma" {insert na8st gbar_na8st= gbar_Na_soma vShift_na8st=$5 kinfact_na8st=$7 ena=60}
  forsec "dendrite" {insert na8st gbar_na8st= gbar_Na_dend vShift_na8st=$5 kinfact_na8st=$7 ena=60}	
  if (axonGC) {
	AIS			{insert na8stX gbar_na8stX= gbar_Na_ais vShiftX_na8stX=$6 kinfact_na8stX=$7 ena=60}  	
	axon		{insert na8stX gbar_na8stX= gbar_Na_axon vShiftX_na8stX=$5 kinfact_na8stX=$7 ena=60}  	
  }
}

proc insert_Kdr() {local gbar_Kdr_axon, gbar_Kdr_ais, gbar_Kdr_soma, gbar_Kdr_dend 
  gbar_Kdr_axon = $2
  gbar_Kdr_ais = $1
  gbar_Kdr_soma = $3
  gbar_Kdr_dend = $4
  
  forall {insert K_Tst gK_Tstbar_K_Tst=0 ek=-90}
  forall {insert K_Pst gK_Pstbar_K_Pst=0}

  forsec "soma" {gK_Tstbar_K_Tst = gbar_Kdr_soma  gK_Pstbar_K_Pst = gbar_Kdr_soma*$5} 
  forsec "dendrite" {gK_Tstbar_K_Tst = gbar_Kdr_dend  gK_Pstbar_K_Pst = gbar_Kdr_dend*$5}	
  if (axonGC) {
	AIS			{gK_Tstbar_K_Tst = gbar_Kdr_ais gK_Pstbar_K_Pst = gbar_Kdr_ais*$5}  	
	axon		{gK_Tstbar_K_Tst = gbar_Kdr_axon gK_Pstbar_K_Pst = gbar_Kdr_axon*$5}  	
  }
}


Loading data, please wait...