ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/267338.

MEC PV-positive fast-spiking interneuron network generates theta-nested fast oscillations

 Download zip file 
Help downloading and running models
Accession:267338
We use a computational model of a network of Fast-Spiking Parvalbumin-positive Basket Cells to study its synchronizing properties. The intrinsic properties of neurons, properties of chemical synapses and of gap junctions are calibrated using electrophysiological recordings in mice Medial Entorhinal Cortex slices. The neurons synchronize, generating Fast Oscillations nested in an external theta drive. We show how gap junctions are necessary for the generation of the oscillations, how hyperpolarizing chemical synapses give rise to more robust fast oscillations, compared to shunting ones, and how short-term depression in the chemical synapses confine the fast oscillation on a narrow range of phases from the external theta drive.
Model Information (Click on a link to find other models with that property)
Model Type: Connectionist Network;
Brain Region(s)/Organism: Entorhinal cortex; Mouse;
Cell Type(s): Entorhinal cortex fast-spiking interneuron;
Channel(s): I Na,t; I K;
Gap Junctions: Gap junctions;
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: Brian 2;
Model Concept(s): Brain Rhythms; Excitability; Gamma oscillations; Theta oscillations; Short-term Synaptic Plasticity;
Implementer(s): Via, Guillem; Baravalle, Roman;
Search NeuronDB for information about:  GabaA; I Na,t; I K; Gaba;
# -*- coding: utf-8 -*-
import numpy as np
from scipy.signal import cwt, morlet2, butter, sosfiltfilt
import matplotlib.pyplot as plt




def compPWT(signal,fs=np.arange(50.,450.1,3.),dt=1.e-4,word=5,tmin=.0):
  """
  Computes the Wavelet Power Spectra (modulus of complex wavelet transform) for a set of signals
  Input:
   signal (to be analyzed)
   fs (frequencies to compute cwt)
   dt
   word (wavelet order, default=5)
   nlevels (number of levels at contour plot)
   tmin (plot wavelet spectra from tmin to end of signal. in seconds)
  """

  ktmin = int(tmin/dt);

  # Perform Wavelet Analysis
  samp_rate = 1./dt; # Sampling rate is inverse of time step dt
  ss = word*samp_rate/(2.*np.pi*fs); # Compute corresponding wavelet scalings or widths (s).
  pwt = np.power(np.abs(cwt(signal[ktmin:]-np.mean(signal[ktmin:]),morlet2,widths=ss)),2.) # Compute wavelet power, i.e. squared modulus, using a Morlet wavelet

  return pwt

def compPhaseWT(signal,fs=np.arange(50.,450.1,3.),dt=1.e-4,word=5,tmin=.0):
  """
  Computes the Wavelet Power Phase (modulus of complex wavelet transform) for a set of signals
  Input:
   signal (to be analyzed)
   fs (frequencies to compute cwt)
   dt
   word (wavelet order, default=5)
   nlevels (number of levels at contour plot)
   tmin (plot wavelet spectra from tmin to end of signal. in seconds)
  """

  ktmin = int(tmin/dt);

  # Perform Wavelet Analysis
  samp_rate = 1./dt; # Sampling rate is inverse of time step dt
  ss = word*samp_rate/(2.*np.pi*fs); # Compute corresponding wavelet scalings or widths (s).
  #pwt = np.angle(cwt(signal[ktmin:]-np.mean(signal[ktmin:]),morlet2,widths=ss)) # Compute wavelet phase, using a Morlet wavelet
  pwt = np.angle(cwt(signal[ktmin:]-np.mean(signal[ktmin:]),morlet2,widths=ss))
  return pwt

def plot1(cwtPow,max_power=None,fs=np.arange(50.,450.1,3.),tmin=.0,dt=.1,nlevels=30,Ncycs=1,flims=[],xlims=[],colorbar=True,cmap="hot"):
    """
    plot the contour plot for the wavelet scalogram for one single simulation
    """
    ktmin = int(np.round(tmin/dt));
    Nt_pr_cyc = int(np.round(125./dt));
    if max_power==None: max_power = np.max(np.max(cwtPow));
    levels = np.linspace(0.,max_power+1.,nlevels);
    tmp = plt.contourf(np.linspace(-np.pi,-np.pi+2.*np.pi*Ncycs,int(np.round(Ncycs*Nt_pr_cyc))),fs,np.abs(cwtPow[:,ktmin:]),levels=levels,cmap=cmap,rasterized=True);

    if colorbar==True: tmp = plt.colorbar();

    if len(flims)==0: tmp = plt.ylim(fs[0],fs[-1]);
    else: tmp = plt.ylim(flims[0],flims[1]);

    if len(xlims)==0: tmp = plt.xlim(-np.pi,-np.pi+2.*np.pi*Ncycs);
    else: tmp = plt.xlim(xlims[0],xlims[1]);

def plotPhase(cwtPow,max_power=None,fs=np.arange(50.,450.1,3.),tmin=.0,dt=.1,nlevels=30,Ncycs=1,flims=[],xlims=[],colorbar=True,cmap="hot"):
    """
    plot the contour plot for the wavelet scalogram for one single simulation
    """
    ktmin = int(np.round(tmin/dt));
    Nt_pr_cyc = int(np.round(125./dt));
    #if max_power==None: max_power = np.max(np.max(cwtPow));
    levels = 30#np.linspace(0.,max_power+1.,nlevels);
    tmp = plt.contourf(np.linspace(-np.pi,-np.pi+2.*np.pi*Ncycs,int(np.round(Ncycs*Nt_pr_cyc))),fs,cwtPow[:,ktmin:],levels=levels,cmap=cmap,rasterized=True);

    if colorbar==True: tmp = plt.colorbar();

    if len(flims)==0: tmp = plt.ylim(fs[0],fs[-1]);
    else: tmp = plt.ylim(flims[0],flims[1]);

    if len(xlims)==0: tmp = plt.xlim(-np.pi,-np.pi+2.*np.pi*Ncycs);
    else: tmp = plt.xlim(xlims[0],xlims[1]);