ModelDB is moving. Check out our new site at The corresponding page is

MEC PV-positive fast-spiking interneuron network generates theta-nested fast oscillations

 Download zip file 
Help downloading and running models
We use a computational model of a network of Fast-Spiking Parvalbumin-positive Basket Cells to study its synchronizing properties. The intrinsic properties of neurons, properties of chemical synapses and of gap junctions are calibrated using electrophysiological recordings in mice Medial Entorhinal Cortex slices. The neurons synchronize, generating Fast Oscillations nested in an external theta drive. We show how gap junctions are necessary for the generation of the oscillations, how hyperpolarizing chemical synapses give rise to more robust fast oscillations, compared to shunting ones, and how short-term depression in the chemical synapses confine the fast oscillation on a narrow range of phases from the external theta drive.
Model Information (Click on a link to find other models with that property)
Model Type: Connectionist Network;
Brain Region(s)/Organism: Entorhinal cortex; Mouse;
Cell Type(s): Entorhinal cortex fast-spiking interneuron;
Channel(s): I Na,t; I K;
Gap Junctions: Gap junctions;
Receptor(s): GabaA;
Transmitter(s): Gaba;
Simulation Environment: Brian 2;
Model Concept(s): Brain Rhythms; Excitability; Gamma oscillations; Theta oscillations; Short-term Synaptic Plasticity;
Implementer(s): Via, Guillem; Baravalle, Roman;
Search NeuronDB for information about:  GabaA; I Na,t; I K; Gaba;
import numpy as np
import matplotlib.pyplot as plt
import FSIN as sim

#Ises = [np.loadtxt("fIs_exp/IsAct_kneu%d.dat" % kneu) for kneu in range(90)]
#fses = np.array([np.loadtxt("fIs_exp/fsAct_kneu%d.dat" % kneu) for kneu in range(90)])

#DerivadaExp = [(fs[1]-fs[0])/(Is[1]-Is[0]) for (Is,fs) in zip(Ises,fses)]

CMat = 0
Is = np.arange(50.,500.1,50.);#[50.,200.,500.]#
simtime = 800.


datas = [ sim.gewnet(Nrec=Nrec,return_state=True,method="rk4",dt=1.e-3,step_current=True,sin_cond=False,Ips=I*np.ones(Nneur),act_syns=False,gjs=True, homo_act=False,kneu=29,sim_time=simtime,mod_gL=True,read_ggaps=True,connectivity_matrix=CMat) for I in Is ];


ISIses = [ [ sim.b2.diff(datas[kI][1].spike_trains()[kneu]/ for kI in range(len(Is)) ] for kneu in range(N) ];
fses = [ [ 1.e+3 / min(ISIses[kneu][kI][-10:]) for kI in range(len(Is)) if len(ISIses[kneu][kI])>15 ] for kneu in range(N) ];
Ises = [ [ Is[kI] for kI in range(len(Is)) if len(ISIses[kneu][kI])>15 ] for kneu in range(N) ];

RheoBaseModel = [Is[0] for Is in Ises]
CutoffModel = np.array([fs[0] for fs in fses])

tmp=plt.figure(figsize=[6.4, 2.5])
tmp =plt.subplot(1,2,1)
tmp = [ plt.plot(Is,fs,"-o",Is[0],fs[0],'rd') for (Is,fs) in zip(Ises,fses) ]; tmp = plt.xlim(0.,500.); tmp = plt.ylim(0.,400.);
#tmp = [ plt.plot(Is,fs,"-") for (Is,fs) in zip(Ises_heteact[::5], fses_heteact[::5]) ]; tmp = plt.xlim(0.,500.); tmp = plt.ylim(0.,500.);;
tmp = plt.savefig("Figures/FigS2A.eps", dpi=300); #tmp = plt.clf(); # To save plot in eps file
tmp = plt.savefig("Figures/FigS2A.png", dpi=300); tmp = plt.clf(); # To save plot in png file