CA3 Pyramidal Neuron (Migliore et al 1995)

 Download zip file 
Help downloading and running models
Accession:3263
Model files from the paper: M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3 hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). Demonstrates how the same cell could be bursting or non bursting according to the Ca-independent conductance densities. Includes calculation of intracellular Calcium. Instructions are provided in the below README file. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
Reference:
1 . Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
/
ca3_db
README.txt
borgka.mod *
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
kahp.mod *
kdr.mod *
nahh.mod *
ca3a.geo
mosinit.hoc
test_a.hoc *
                            
TITLE Borg-Graham type generic K-AHP channel

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	celsius 	(degC)
	gkahpbar=.003 (mho/cm2)
        n=4
        cai=50.e-6  (mM)
        a0=1.3e13	(/ms-mM-mM-mM-mM)	:b0/(1.4e-4^4)
        b0=.5e-2 	(/ms)			:0.5/(0.100e3)
        v       (mV)
        ek      (mV)
}


NEURON {
	SUFFIX kahp
	USEION k READ ek WRITE ik
        USEION ca READ cai
        RANGE gkahpbar,gkahp
        GLOBAL inf,tau
}

STATE {
	w
}

ASSIGNED {
	ik (mA/cm2)
        gkahp  (mho/cm2)
        inf
        tau
}

INITIAL {
        rate(cai)
        w=inf
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkahp = gkahpbar*w
	ik = gkahp*(v-ek)

}

FUNCTION alp(cai (mM)) {
  alp = a0*cai^n
}

DERIVATIVE state {     : exact when v held constant; integrates over dt step
        rate(cai)
        w' = (inf - w)/tau
}

PROCEDURE rate(cai (mM)) { :callable from hoc
        LOCAL a
        a = alp(cai)
        tau = 1/(a + b0)
        inf = a*tau
}
















Loading data, please wait...