ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/34558.

Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)

 Download zip file 
Help downloading and running models
Accession:34558
It has been found that in cultured Aplysia neurons bath applications of 40 mM cafffeine evokes oscillations of the membrane potential with about a 40 mV amplitude with a frequency of 0.2 to 0.5 Hz. The most probable mechanism of these caffeine-induced oscillations is inhibition of voltage-activated outward potassium current and, as can be seen from our mathematical modeling, slowdown of inactivation of inward sodium current. It seems likely that these oscillations have a purely membrane origin. Please see paper for results and details.
Reference:
1 . Komendantov AO, Kononenko NI (2000) Caffeine-induced oscillations of the membrane potential in Aplysia Neurons. Neirofiziologiya/Neurophysiology 32:102-111
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Aplysia cultured neuron;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s): Activity Patterns; Bursting; Oscillations; Action Potentials; Invertebrate;
Implementer(s): Komendantov, Alexander O [akomenda at tulane.edu]; Kononenko, Nikolai I [nik137 at lamar.colostate.edu];
Search NeuronDB for information about:  I Na,t; I K;
/
Komendantov
Fig_7
Figure_7.bch
L7.neu *
L7.ntw *
L7_01.ous *
L7_01.smu *
L7_01.trt *
L7_K.a *
L7_K.vdg *
L7_leak.vdg *
L7_Na.A *
L7_Na.B *
L7_Na.vdg *
                            
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>    module's name: B		>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>----------------------------------------------------------------------->

		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
B:		> 	Inactivation function (time constant method)	>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>------------------------------->--------------------------------------->
>				>					>
>	1			>	B = ssB			(1)	>
>				>					>
>------------------------------->--------------------------------------->
	2			>	        ssB - B			>
	-1	>IV<		>	dB/dt= ------------	(2)	>
				>	           tB			>
>------------------------------->--------------------------------------->



		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ssB:		> 	Steady state value for activation		>	
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>----------------------->------------------------------------------------------>
>	1		>			1			       >
>       0.0      >h<	>	ssB = --------------------		(1)    >
>	0.0	 >s<	>		+-	     -+ p	  	       >
>	1	 >p<	>		|     (V-h)/s |			       >
>			>		|1 + e        |			       >
>			>		+-	     -+			       >
>			>						       >
>----------------------->------------------------------------------------------>
	2		>		   1 - Bn			       >
	0.24	>Bn<	>	ssB = -------------------- + Bn		       >
       -40.0	>h<	>		+-	     -+ p		       >
       10.0	>s<	>		|     (V-h)/s |			(2)    >
	1.0	>p<	>		|1 + e        |			       >
			>		+-	     -+			       >
>----------------------->------------------------------------------------------>


		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
tB:		> 	Time constant for activation			>	
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>----------------------->------------------------------------------------------>
>			>						       >
>	1		> tB = tx					    (1)>
>	xxxx.xx	>tx<	>						       >
>----------------------->------------------------------------------------------>
	2		>	  tx -tn				       >
     1.2       >tx<	> tB = -------------------- + tn	            (2)>
     0.000     >tn<	>	+-	     -+ p			       >
    25.0       >h<	>	|     (V-h)/s |				       >
    30.0       >s<	>	|1 + e        |				       >
    1	       >p<	>	+-	     -+				       >
			>						       >
>----------------------->------------------------------------------------------>
>	3		>	 		tx -tn			       >
>	1.1	>tx<	> tB = ----------------------------------- + tn     (3)>
>	2.2	>tn<	>	+-	     -+p1 +-	       -+p2	       >
>	3.3	>h1<	>	|   (V-h1)/s1 |	  |   (V-h2)/s2 |	       >
>	4.4	>s1<	>	|1+e          |	  |1+e          |	       >
>	5	>p1<	>	+-	     -+	  +-	       -+	       >
>	6.6	>h2<	>						       >
>	7.7	>s2<	>						       >
>	8	>p2<	>						       >
>----------------------->------------------------------------------------------>
>			>	  +--			      -+	       >
>	4		>	  |   1 - rtn		       |	       >
>	xxx.xx	>tx<	> tB = tx | -------------------- + rtn |            (4)>
>	xxx.xx	>rtn<	>	  | +-	          -+ p	       |	       >
>	xxx.xx	>h<	>	  | |     (V-h)/s  |	       |	       >
>	xxx.xx	>s<	>	  | |1 + e         |	       |	       >
>	x	>p<	>	  | +-	          -+           |	       >
>			>	  +-- 			      -+	       >
>			>						       >
>----------------------->------------------------------------------------------>
>			>	+--			                 -+    >
>	5		>	| 	1 - rtn	 	                  |    >
>	xxx.xx	>tx<	> tB=tx | ---------------------------------- +rtn | (5)>
>	xxx.xx	>rtn<	>	| +-	      -+p1+-	      -+p2        |    >
>	xxx.xx	>h1<	>	| |   (V-h1)/s1|  |   (V-h2)/s2|          |    >
>	xxx.xx	>s1<	>	| |1+e         |  |1+e         |          |    >
>	x	>p1<	>	| +-	      -+  +-	      -+          |    >
>	xxx.xx	>h2<	>	+-- 			   	         -+    >
>	xx.xx	>s2<	>						       >
>	x	>p2<	>						       >
>----------------------->------------------------------------------------------>


Loading data, please wait...