ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/34558.

Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)

 Download zip file 
Help downloading and running models
Accession:34558
It has been found that in cultured Aplysia neurons bath applications of 40 mM cafffeine evokes oscillations of the membrane potential with about a 40 mV amplitude with a frequency of 0.2 to 0.5 Hz. The most probable mechanism of these caffeine-induced oscillations is inhibition of voltage-activated outward potassium current and, as can be seen from our mathematical modeling, slowdown of inactivation of inward sodium current. It seems likely that these oscillations have a purely membrane origin. Please see paper for results and details.
Reference:
1 . Komendantov AO, Kononenko NI (2000) Caffeine-induced oscillations of the membrane potential in Aplysia Neurons. Neirofiziologiya/Neurophysiology 32:102-111
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Aplysia cultured neuron;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s): Activity Patterns; Bursting; Oscillations; Action Potentials; Invertebrate;
Implementer(s): Komendantov, Alexander O [akomenda at tulane.edu]; Kononenko, Nikolai I [nik137 at lamar.colostate.edu];
Search NeuronDB for information about:  I Na,t; I K;
/
Komendantov
control
Fig_6
Fig_7
xls
README.txt
L7.neu *
L7.ntw *
L7_01.ous *
L7_01.smu *
L7_01.trt *
L7_01_smu.jpg
L7_K.a *
L7_K.vdg *
L7_leak.vdg *
L7_Na.A *
L7_Na.B *
L7_Na.vdg *
                            
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>    modules name: vdg		>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ivd:		> 	Current due to a voltage-dependent conductance	>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>------------------------------->--------------------------------------->
>				>		p			>
>	1			>	G= g x A x B 		(1)	>
>	model.A		>A<	>					>
>	model.B		>B<	>					>
>	0.00 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	0 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	2			>	Ivd= g x m x h 		(2)	>
>	model.m		>m<	>					>
>	model.h		>h<	>					>
>	0.00 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	0 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	3			>	G= g x A		(3)	>
>	model.A		>A<	>					>
>	0.00 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	0 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	4			>	Ivd= g x m 		(4)	>
>	model.m		>m<	>					>
>	0.00 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	0 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
				>					>
	5			>	Ivd = G x (V -E)	(5)	>
        0.013  	       >g<	>					>
      -60.0            >E<	>					>
				>					>
>------------------------------->--------------------------------------->

END:

Loading data, please wait...