ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/37819.

Thalamocortical augmenting response (Bazhenov et al 1998)

 Download zip file 
Help downloading and running models
Accession:37819
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
Reference:
1 . Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I T low threshold; I A; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Synaptic Integration;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; I Na,t; I T low threshold; I A; I K,Ca; Gaba; Glutamate;
: $Id: netcon.inc,v 1.10 2004/07/28 20:41:24 billl Exp $

COMMENT
USAGE: for most receptors
 *****************************************************************************
    NEURON {
      POINT_PROCESS NAME
    }

    PARAMETER {
      Cdur	= 1.08	(ms)		: transmitter duration (rising phase)
      Alpha	= 1	(/ms mM)	: forward (binding) rate
      Beta	= 0.02	(/ms)		: backward (unbinding) rate
      Erev	= -80	(mV)		: reversal potential
    }
    
    INCLUDE "netsyn.inc"
 *****************************************************************************

USAGE: for NMDA receptor
 *****************************************************************************
    NEURON{ POINT_PROCESS NMDA
      RANGE B 
    }

    PARAMETER {
      mg        = 1.    (mM)     : external magnesium concentration
      Cdur	= 1.	(ms)	 : transmitter duration (rising phase)
      Alpha	= 4.	(/ms mM) : forward (binding) rate
      Beta	= 0.0067 (/ms)	 : backward (unbinding) rate 1/150
      Erev	= 0.	(mV)	 : reversal potential
    }

    ASSIGNED { B }

    INCLUDE "netcon.inc"
    : EXTRA BREAKPOINT MUST BE BELOW THE INCLUDE
    BREAKPOINT {
      rates(v)
      g = g * B : but don't really need to readjust conductance
      i = i * B : i = g*(v - Erev)
    }

    PROCEDURE rates(v(mV)) {
      TABLE B
      DEPEND mg
      FROM -100 TO 80 WITH 180
      B = 1 / (1 + Exp1(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
    }
 *****************************************************************************
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
  RANGE g, Erev
  NONSPECIFIC_CURRENT i
  GLOBAL Cdur, Alpha, Beta, Rinf, Rtau
}

UNITS {
  (nA) = (nanoamp)
  (mV) = (millivolt)
  (umho) = (micromho)
  (mM) = (milli/liter)
}

ASSIGNED {
  v		(mV)		: postsynaptic voltage
  i 		(nA)		: current = g*(v - Erev)
  g 		(umho)		: conductance
  Rinf				: steady state channels open
  Rtau		(ms)		: time constant of channel binding
  synon
}

STATE {Ron Roff}

INITIAL {
  Rinf = Alpha / (Alpha + Beta)
  Rtau = 1 / (Alpha + Beta)
  synon = 0
}

BREAKPOINT {
  SOLVE release METHOD cnexp
  g = (Ron + Roff)*1(umho)
  i = g*(v - Erev)
}

DERIVATIVE release {
  Ron' = (synon*Rinf - Ron)/Rtau
  Roff' = -Beta*Roff
}

: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first

NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
  : flag is an implicit argument of NET_RECEIVE and  normally 0
  if (t>0) { : bug fix so that init doesn't send a false event
    if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
      nspike = nspike + 1
      if (!on) {
        r0 = r0*Exp1(-Beta*(t - t0))
        t0 = t
        on = 1
        synon = synon + weight
        Ron = Ron + r0
        Roff = Roff - r0
      }
      : come again in Cdur with flag = current value of nspike
      net_send(Cdur, nspike)
    }
    if (flag == nspike) { : if this associated with last spike then turn off
      r0 = weight*Rinf + (r0 - weight*Rinf)*Exp1(-(t - t0)/Rtau)
      t0 = t
      synon = synon - weight
      Ron = Ron - r0
      Roff = Roff + r0
      on = 0
    }
  }
}

FUNCTION Exp1(x) {   
  if (x < -100) {
    Exp1  = 0
  } else if (x > 100) {
    Exp1 = exp(100)
  } else{
    Exp1 = exp(x)
  }
}

Loading data, please wait...