Spinal Motor Neuron (Dodge, Cooley 1973)

 Download zip file 
Help downloading and running models
Accession:3805
"The excitability of various regions of the spinal motorneuron can be specified by solving the partial differential equation of a nerve fiber whose diameter and membrane properties vary with distance. For our model geometrical factors for the myelinated axon, initial segment and cell body were derived from anatomical measurements, the dendritic tree was represented by its equivalent cylinder, and the current-voltage relations of the membrane were described by a modification of the Hodgkin-Huxley model that fits voltage-clamp data from the motorneuron. ..."
Reference:
1 . Dodge FA, Cooley JW (1973) Action Potential of the Motorneuron. IBM J Res Dev 17:219-29
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell; Myelinated neuron;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Active Dendrites; Tutorial/Teaching; Axonal Action Potentials; Action Potentials;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Na,t; I K;
load_file("nrngui.hoc")
objectvar save_window_, rvp_
objectvar scene_vector_[7]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}

//Begin PointProcessManager
{
load_file("pointman.hoc")
}
{
extra ocbox_ = new PointProcessManager(0)
}
{object_push(ocbox_)}
{
mt.select("IClamp") i = mt.selected()
ms[i] = new MechanismStandard("IClamp")
ms[i].set("del", 0, 0)
ms[i].set("dur", 0.1, 0)
ms[i].set("amp", 20, 0)
mt.select("IClamp") i = mt.selected() maction(i)
hoc_ac_ = 1
sec.sec move() d1.flip_to(0)
}
{object_pop() doNotify()}
{
ocbox_ = ocbox_.v1
ocbox_.map("PointProcessManager", 75, 536, 208.32, 326.4)
}
objref ocbox_
//End PointProcessManager

{
save_window_ = new Graph(0)
save_window_.size(0,4,0,100)
scene_vector_[3] = save_window_
{save_window_.view(0, 0, 4, 100, 387, 49, 341.76, 232)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("soma.v(.42)", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("is.v(.5)", 3, 1, 0.8, 0.9, 2)
save_window_.addexpr("myelin.v(.5)", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("node.v(.5)", 2, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend.v(.083)", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("RunControl", 0)
v_init = 0
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 4
xvalue("t","t", 2 )
tstop = 4
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
xcheckbox("Quiet",&stdrun_quiet,"")
realtime = 5
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(78,137)
}
{
save_window_ = new Graph(0)
save_window_.size(-1525,4800,0,100)
scene_vector_[4] = save_window_
{save_window_.view(-1525, 0, 6325, 100, 766, 54, 300.48, 200.32)}
flush_list.append(save_window_)
save_window_.save_name("flush_list.")
objectvar rvp_
rvp_ = new RangeVarPlot("v")
extra rvp_.begin(1)
dend rvp_.end(1)
rvp_.origin(0)
save_window_.addobject(rvp_, 2, 1, 0.8, 0.9)
}
{
save_window_ = new Graph(0)
save_window_.size(-0.1,4,-5.1,1.1)
scene_vector_[5] = save_window_
{save_window_.view(-0.1, -5.1, 4.1, 6.2, 390, 352, 335.04, 136.96)}
graphList[1].append(save_window_)
save_window_.save_name("graphList[1].")
save_window_.addexpr("soma.i_membrane( 0.42 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("is.i_membrane( 0.5 )", 3, 1, 0.8, 0.9, 2)
save_window_.addvar("node[0].i_membrane( 0.5 )", 2, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(-500,1000,-5,1)
scene_vector_[6] = save_window_
{save_window_.view(-500, -5, 1500, 6, 769, 328, 300.48, 200.32)}
flush_list.append(save_window_)
save_window_.save_name("flush_list.")
objectvar rvp_
rvp_ = new RangeVarPlot("i_membrane")
extra rvp_.begin(1)
dend rvp_.end(1)
rvp_.origin(0)
save_window_.addobject(rvp_, 2, 1, 0.8, 0.9)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...