AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)

 Download zip file 
Help downloading and running models
Accession:54903
The model of type II cochlear ganglion cell was based on the immunostaining of the mouse auditory pathway. Specific antibodies were used to map the distribution of voltage-dependent sodium channels along the two unmyelinated axon-like processes of the bipolar ganglion cells. Three distinct hot spots were detected. A high density of sodium channels was present over the entire trajectory of sensory endings beneath the outer hair cells (the most distal portion of the peripheral axon). The other two hot spots were localized in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. A biophysical model indicates that all three hot spots might play important roles in action potential initiation and propagation. For instance, the hot spot in the receptor segment is important for transforming the receptor potentials into a full blown action potential (Supplemental Fig. 1). The hot spots in the two paraganglionic axon initial segments are there to ensure the successful propagation of action potentials from the peripheral to the central axon through the cell body. The Readme.txt file provides step by step instructions on how to recreate Figures 6 and 7 of Hossain et al., 2005 paper.
Reference:
1 . Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857-68 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cochlear ganglion cell Type II;
Channel(s): I Na,t; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Dendritic Action Potentials; Audition;
Implementer(s): Antic, Srdjan [antic at neuron.uchc.edu];
Search NeuronDB for information about:  I Na,t; I K; I M;
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal


na.mod

Sodium channel, Hodgkin-Huxley style kinetics.  

Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)

qi is not well constrained by the data, since there are no points
between -80 and -55.  So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc

voltage dependencies are shifted approximately from the best
fit to give higher threshold

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX na
	USEION na READ ena WRITE ina
	RANGE m, h, gna, gbar
	GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
	RANGE minf, hinf, mtau, htau
	GLOBAL Ra, Rb, Rd, Rg
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 120   	(pS/um2)	: 0.12 mho/cm2
	vshift = -10	(mV)		: voltage shift (affects all)
								
	tha  = -35	(mV)		: v 1/2 for act		(-42)
	qa   = 9	(mV)		: act slope		
	Ra   = 0.182	(/ms)		: open (v)		
	Rb   = 0.124	(/ms)		: close (v)		

	thi1  = -50	(mV)		: v 1/2 for inact 	
	thi2  = -75	(mV)		: v 1/2 for inact 	
	qi   = 5	(mV)	        : inact tau slope
	thinf  = -65	(mV)		: inact inf slope	
	qinf  = 6.2	(mV)		: inact inf slope
	Rg   = 0.0091	(/ms)		: inact (v)	
	Rd   = 0.024	(/ms)		: inact recov (v) 

	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	gna		(pS/um2)
	ena		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
        gna = tadj*gbar*m*m*m*h
	ina = (1e-4) * gna * (v - ena)
} 

LOCAL mexp, hexp 

DERIVATIVE states {   :Computes state variables m, h, and n 
        trates(v+vshift)      :             at the current v and dt.
        m' =  (minf-m)/mtau
        h' =  (hinf-h)/htau
}

PROCEDURE trates(v) {  
                      
        
        TABLE minf,  hinf, mtau, htau
	DEPEND  celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

:        tinc = -dt * tadj

:        mexp = 1 - exp(tinc/mtau)
:        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b

	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)

        tadj = q10^((celsius - temp)/10)

	mtau = 1/tadj/(a+b)
	minf = a/(a+b)

		:"h" inactivation 

	a = trap0(vm,thi1,Rd,qi)
	b = trap0(-vm,-thi2,Rg,qi)
	htau = 1/tadj/(a+b)
	hinf = 1/(1+exp((vm-thinf)/qinf))
}


FUNCTION trap0(v,th,a,q) {
	if (fabs(v/th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	





Loading data, please wait...