ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/64212.

Vomeronasal sensory neuron (Shimazaki et al 2006)

 Download zip file 
Help downloading and running models
Accession:64212
NEURON model files from the papers: Shimazaki et al, Chem. Senses, epub ahead of print (2006) Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. The model reproduces quantitatively the experimentally observed firing rates of these neurons under a wide range of input currents.
Reference:
1 . Shimazaki R, Boccaccio A, Mazzatenta A, Pinato G, Migliore M, Menini A (2006) Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. Chem Senses 31:425-35 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Shimazaki, Ranken ;
Search NeuronDB for information about:  I Na,t; I A; I K;
/
VNO
readme.txt
kavn.mod
kdr.mod *
navn.mod
mosinit.hoc
vno.hoc
vno.ses
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	q10=1
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax}
}















Loading data, please wait...