ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/83344.

Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)

 Download zip file 
Help downloading and running models
Accession:83344
"... We examined the relationship between dendritic arborization and the coupling between somatic and dendritic action potential (AP) initiation sites in layer 5 (L5) neocortical pyramidal neurons. Coupling was defined as the relative reduction in threshold for initiation of a dendritic calcium AP due to a coincident back-propagating AP. Simulations based on reconstructions of biocytin-filled cells showed that addition of oblique branches of the main apical dendrite in close proximity to the soma (d < 140 um) increases the coupling between the apical and axosomatic AP initiation zones, whereas incorporation of distal branches decreases coupling. ... We conclude that variation in dendritic arborization may be a key determinant of variability in coupling (49+-17%; range 19-83%; n = 37) and is likely to outweigh the contribution made by variations in active membrane properties. Thus coincidence detection of inputs arriving from different cortical layers is strongly regulated by differences in dendritic arborization."
Reference:
1 . Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143-54 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Coincidence Detection;
Implementer(s): Schaefer, Andreas T [andreas.schaefer at crick.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I A; I K; I M; I K,Ca; I Calcium;
print "*******************************************************************************"
print "*******************************************************************************"
print "                       THIS IS A PRELIMINARY VERSION !!!!!"
print "                               PLEASE CONTACT" 
print "                      schaefer@sun0.mpimf-heidelberg.mpg.de"
print "                          FOR THE MOST RECENT ONE"
print "*******************************************************************************"
print "*******************************************************************************"

/* --------------------------------------------------------------
   NEURON code to simulate BAC firing in compartmental models
   of Layer 5 Pyramidal cells
   for detailed description see Schaefer, Larkum, Sakmann, Roth
   "Coincidence detection in pyramidal neurons is tuned by their
   dendritic branching pattern" J. Neurophys. in press
   -------------------------------------------------------------- */

strdef modelName, loadProgram, cellName, outputFile, cellPath, loadProgram
objref trunc, secR, fi,vC, mbSec
objref sh, axonal, dendritic, dendritic_only, initZone, stimSec
objref st, syn,trunc,mbSec, middleSec

create somaA,iseg,hill,myelin[2],node[2],dendA1_0
access somaA

steps_per_ms = 40
dt = 0.025

sprint(cellPath,"")

load_proc("nrnmainmenu")

// --------------------------------------------------------------
// passive & active membrane 
// --------------------------------------------------------------

spA  = 2 		// increase in membrane area due to spines

ra        = 80			
global_ra = ra
rm        = 30000			
c_m       = 0.6
cm_myelin = 0.04
g_pas_node = 0.02

v_init    = -70            
celsius   = 34			

Ek = -90
Ena = 60

gna_dend = 27 
gna_node = 30000   
gna_soma = 54
gna_myelin = 80  
gkv_axon = 3000 
gkv_soma = 600 
gkv_dend = 30 

gca_dend =1.5
gkm_dend =.1
gkca_dend=3.25

gca_soma = 3 
gkm_soma = 0.2 
gkca_soma = 6.5 
 
gka_soma  = 0.06        
gka_dend  = 0.02
gka_slope = 0   // no gradient

tauR   = 80
caiExp = 4
rA     = 0.05
rB     = 0.1

// --------------------------------------------------------------
// Low Threshold Ca Channel to reproduce frequency effect (Larkum, Kaiser, Sakmann, PNAS,1999)
// --------------------------------------------------------------
vh1_it2=56
vh2_it2=415
ah_it2=30				
v12m_it2=45
v12h_it2=65  
am_it2=3
vshift_it2=10
vm1_it2=50
vm2_it2=125

it2_init=0.0005   
gca_init=4.5

// --------------------------------------------------------------
// initiation zone in the dendrite 
// with slightly elevated Ca conductance densities
// --------------------------------------------------------------

proc InitZone() {

  mbSec.sec distance(0,1)
  forall for(x) if(distance(x) <100) {
   gbar_sca = gca_init
   gcabar_it2 = it2_init
  }
}

// --------------------------------------------------------------
// replace init procedure to have sufficiently long prepulse
// --------------------------------------------------------------

proc init() {local saveDt, i

  finitialize(v_init)
  fcurrent()
  saveDt = dt
  dt = 10
  for i=0,99 fadvance()
  dt = saveDt
}

// --------------------------------------------------------------
// Axon geometry
//
// Similar to Mainen et al (Neuron, 1995)
// --------------------------------------------------------------

n_axon_seg = 5

proc create_axon() {local somaArea

  create iseg,hill,myelin[n_axon_seg],node[n_axon_seg]

  somaA {
    somaArea=0
    for(x) somaArea+=area(x)
    equiv_diam = sqrt(somaArea/(4*PI))
  }

  iseg {                
     pt3dclear() pt3dadd(0,0,0,diam) pt3dadd(0,-1000,0,diam) 
     L = 15
     nseg = 5
     diam = equiv_diam/10    
  }

  hill {                
    pt3dclear() pt3dadd(0,0,0,diam) pt3dadd(0,-1000,0,diam) 
    L = 10
    nseg = 5
    diam(0:1) = 4*iseg.diam:iseg.diam
  }
  for i=0,n_axon_seg-1 {
    myelin[i] {         // myelin element
      pt3dclear() pt3dadd(0,0,0,diam) pt3dadd(0,-1000,0,diam)   
      nseg = 5
      L = 100
      diam = iseg.diam         
    }
    node[i] {           // nodes of Ranvier
      pt3dclear() pt3dadd(0,0,0,diam) pt3dadd(0,-1000,0,diam) 
      nseg = 1
      L = 1.0           
      diam = iseg.diam*.75       // nodes are thinner than axon
    }
  }
  somaA connect hill(0), 0.5
  hill connect iseg(0), 1
  iseg connect myelin[0](0), 1
  myelin[0] connect node[0](0), 1
  for i=0,n_axon_seg-2  { 
      node[i] connect myelin[i+1](0), 1 
      myelin[i+1] connect node[i+1](0), 1
  }
}

// --------------------------------------------------------------
// Spines
// --------------------------------------------------------------


proc add_spines() { 

  // increase all dendritic conductances by factor spA
  // increase dendritic cm and g_pas by same
  // to account for increase in membrane area without changing distances etc

  forsec dendritic_only {
    cm        *=spA 
    g_pas     *=spA 
    gbar_na   *=spA 
    gbar_kv   *=spA 
    gbar_km   *=spA 
    gbar_kca  *=spA 
    gbar_sca  *=spA 
    gbar_kap  *=spA
    gcabar_it2*=spA 

  }
}

// --------------------------------------------------------------
// Initialization routines
// --------------------------------------------------------------


proc init_cell() {	


  // passive
  forall {
    insert pas
    Ra = ra 
    cm = c_m 
    g_pas = 1/rm
    e_pas = v_init
  }

  // exceptions along the axon
  forsec "myelin" cm = cm_myelin
  forsec "node" g_pas = g_pas_node

  // active 
  // axon
  forall insert na
  forsec "myelin" gbar_na = gna_myelin
  forsec "hill" gbar_na = gna_node
  forsec "iseg" gbar_na = gna_node
  forsec "node" gbar_na = gna_node
  forsec "iseg" { insert kv  gbar_kv = gkv_axon }
  forsec "hill" { insert kv  gbar_kv = gkv_axon }

  // dendrites
  forsec dendritic_only {
    		 gbar_na = gna_dend
    insert kv    gbar_kv = gkv_dend 
    insert km    gbar_km  = gkm_dend
    insert kca   gbar_kca = gkca_dend
    insert kap   gkabar_kap = gka_soma
    insert sca   gbar_sca = gca_dend
    insert it2   gcabar_it2=0
    insert cad2
  }

  // soma
  somaA {
                 gbar_na = gna_soma
    insert kv    gbar_kv = gkv_soma 
    insert km    gbar_km = gkm_soma
    insert kca   gbar_kca = gkca_soma
    insert kap   gkabar_kap = gka_soma
    insert sca   gbar_sca = gca_soma
    insert cad2
  }

  forall if(ismembrane("k_ion")) ek = Ek
  forall if(ismembrane("na_ion")) {
    ena = Ena
    vshift_na = -5
  }
  forall if(ismembrane("ca_ion")) {
    eca = 140
    ion_style("ca_ion",0,1,0,0,0)
    vshift_ca = 10
  }


// ca diffusion  and kca parameters
  taur_cad2 = tauR 
  caix_kca  = caiExp
  Ra_kca    = rA 
  Rb_kca    = rB 

  InitZone()
  add_spines()

}

// --------------------------------------------------------------
// loading cell
// --------------------------------------------------------------

proc load_3dcell() {
  // $s1 filename

  aspiny = 0
  forall delete_section()
  xopen($s1)
  access somaA
  forsec "axon" delete_section()
  dendritic = new SectionList()

  // make sure no compartments exceed 20 uM length
  forall {
    if(nseg < L/20) { print secname(), " not accurate" nseg=L/20+1 }
    dendritic.append()
  }    
  dendritic_only = new SectionList()
  forsec dendritic dendritic_only.append()
  somaA  dendritic_only.remove()
}

// --------------------------------------------------------------
// Main Loading procedure
// --------------------------------------------------------------

proc LoadNInit() {

  sprint(loadProgram,"%s.nrn",$s1)
  load_3dcell(loadProgram) 
  create_axon()
  init_cell()
}

// --------------------------------------------------------------
// setting stimuli
// --------------------------------------------------------------

st  = new IClamp(.5)
syn = new epsp(1)

proc IatSoma() {

  st=new IClamp(.5)
  st.del = 1005.1
  st.dur = 5 
  st.amp = 1.2

}

// EPSP : f(t) = (1-exp(-t/chi1)) * exp(-t/chi2) 
//       mit chi1 = 0.5 -2 ms und chi2 = 2-8 ms

proc EPSPAtDend() {

 mbSec.sec  {
   syn = new epsp(1)
   syn.tau0 = 0.8		
   syn.tau1 = 4			
   syn.onset = 1007.1  
   syn.imax = 0.5
  }    
}

// ----------------------------------------------------------------
// Run Routine
// ----------------------------------------------------------------

proc DoIt() {local i, j

  init()
  for i=0,999 {
    for j=0,0.1/dt-1 fadvance()
  }
}

forall delete_section()
cellName="d980329a-1"
printf("%s is the current cell\n",cellName)

LoadNInit(cellName)
IatSoma()
EPSPAtDend()

// --------------------------------------------------------------
// finally opening all graphs and panels
// --------------------------------------------------------------

xopen("Display.ses")

//   the structure of this program was inspired by Mainen/Sejnowski 
//   http://www.cnl.salk.edu/~zach/source/pat-demo.tgz 	

print "*******************************************************************************"
print "*******************************************************************************"
print "                       THIS IS A PRELIMINARY VERSION !!!!!"
print "                               PLEASE CONTACT" 
print "                      schaefer@sun0.mpimf-heidelberg.mpg.de"
print "                          FOR THE MOST RECENT ONE"
print "*******************************************************************************"
print "*******************************************************************************"


Loading data, please wait...