ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/97917.

Cell splitting in neural networks extends strong scaling (Hines et al. 2008)

 Download zip file 
Help downloading and running models
Accession:97917
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.
Reference:
1 . Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci 25:203-10 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Generic;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
splitcell
nrntraub
mod
alphasyndiffeq.mod
alphasynkin.mod *
alphasynkint.mod *
ampa.mod
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod *
naf_tcr.mod
naf2.mod *
nap.mod *
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod
                            
: alphasynkin.mod
: Alpha Synapse implemented with Kinetic Scheme as per Chapter 10 NEURON book
NEURON {
	POINT_PROCESS AlphaSynKin
	RANGE tau, e, i
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau = 0.1 (ms) <1e-9,1e9>
	e = 0	(mV)
}

ASSIGNED {
	v (mV)
	i (nA)
}

STATE { a (microsiemens) g (uS) }

INITIAL {
	g=0
}

BREAKPOINT {
	SOLVE state METHOD sparse
	i = g*(v - e)
}

KINETIC state {
	~ a <-> g (1/tau, 0)
	~ g -> (1/tau)
}

NET_RECEIVE(weight (uS)) {
	a = a + weight*exp(1)
}

Loading data, please wait...