TITLE Cerebellum Golgi Cell Model COMMENT Na resurgent channel Author: T.Nieus Last revised: 30.6.2003 Critical value gNa Inserted a control in bet_s to avoid huge values of x1 ENDCOMMENT NEURON { SUFFIX Golgi_NaR USEION na READ ena WRITE ina RANGE gnabar, ina, g RANGE Aalpha_s,Abeta_s,V0alpha_s,V0beta_s,Kalpha_s,Kbeta_s RANGE Shiftalpha_s,Shiftbeta_s,tau_s,s_inf RANGE Aalpha_f,Abeta_f,V0alpha_f,V0beta_f,Kalpha_f, Kbeta_f RANGE f, tau_f,f_inf,s , tau_s,s_inf, tcorr } UNITS { (mA) = (milliamp) (mV) = (millivolt) } PARAMETER { : s-ALFA Aalpha_s = -0.00493 (/ms) V0alpha_s = -4.48754 (mV) Kalpha_s = -6.81881 (mV) Shiftalpha_s = 0.00008 (/ms) : s-BETA Abeta_s = 0.01558 (/ms) V0beta_s = 43.97494 (mV) Kbeta_s = 0.10818 (mV) Shiftbeta_s = 0.04752 (/ms) : f-ALFA Aalpha_f = 0.31836 (/ms) V0alpha_f = -80 (mV) Kalpha_f = -62.52621 (mV) : f-BETA Abeta_f = 0.01014 (/ms) V0beta_f = -83.3332 (mV) Kbeta_f = 16.05379 (mV) v (mV) gnabar= 0.0017 (mho/cm2) ena (mV) celsius (degC) Q10 = 3 (1) } STATE { s f } ASSIGNED { ina (mA/cm2) g (mho/cm2) alpha_s (/ms) beta_s (/ms) s_inf tau_s (ms) alpha_f (/ms) beta_f (/ms) f_inf tau_f (ms) tcorr (1) } INITIAL { rate(v) s = s_inf f = f_inf } BREAKPOINT { SOLVE states METHOD derivimplicit g = gnabar*s*f ina = g*(v - ena) alpha_s = alp_s(v) beta_s = bet_s(v) alpha_f = alp_f(v) beta_f = bet_f(v) } DERIVATIVE states { rate(v) s' = ( s_inf - s ) / tau_s f' = ( f_inf - f ) / tau_f } PROCEDURE rate(v (mV)) { LOCAL a_s,b_s,a_f,b_f TABLE s_inf,tau_s,f_inf,tau_f DEPEND celsius FROM -100 TO 30 WITH 13000 a_s = alp_s(v) b_s = bet_s(v) s_inf = a_s / ( a_s + b_s ) tau_s = 1 / ( a_s + b_s ) a_f = alp_f(v) b_f = bet_f(v) f_inf = a_f / ( a_f + b_f ) tau_f = 1 / ( a_f + b_f ) } FUNCTION alp_s(v (mV)) (/ms){ tcorr = Q10^( ( celsius - 20 (degC) ) / 10 (degC) ) alp_s = tcorr*(Shiftalpha_s+Aalpha_s*((v+V0alpha_s)/ 1 (mV) )/(exp((v+V0alpha_s)/Kalpha_s)-1)) } FUNCTION bet_s(v (mV)) (/ms){ LOCAL x1 tcorr = Q10^((celsius-20(degC))/10(degC)) x1=(v+V0beta_s)/Kbeta_s if (x1>200) {x1=200} bet_s =tcorr*(Shiftbeta_s+Abeta_s*((v+V0beta_s)/1 (mV) )/(exp(x1)-1)) } FUNCTION alp_f(v (mV)) (/ms){ tcorr = Q10^( ( celsius - 20 (degC) ) / 10 (degC) ) alp_f = tcorr * Aalpha_f * exp( ( v - V0alpha_f ) / Kalpha_f) } FUNCTION bet_f(v (mV)) (/ms){ tcorr = Q10^( ( celsius - 20 (degC) ) / 10 (degC) ) bet_f = tcorr * Abeta_f * exp( ( v - V0beta_f ) / Kbeta_f ) }