TITLE (L-type HVA calcium current for MSP Neuron) INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX CaL12 USEION Ca READ Cai, Cao WRITE iCa VALENCE 2 RANGE minf, mtau, hinf, htau, iCa GLOBAL pmax } UNITS { (mA) = (milliamp) (mV) = (millivolt) (mM) = (milli/liter) FARADAY = 96489 (coul) R = 8.314 (volt-coul/degC) } PARAMETER { v (mV) celsius (degC) : cai (mM) : cao (mM) Cai (mM) Cao (mM) pmax = 6.7e-6 (cm/s) } CONSTANT { a = 0.17 (1) } STATE { m h } ASSIGNED { iCa (mA/cm2) mtau (ms) minf hinf htau (ms) } BREAKPOINT { SOLVE state METHOD cnexp iCa = pmax*m*m*(a*h+(1-a))*ghk(v,Cai,Cao,2) : iCa = pmax*m*m*(a*h+(1-a))*ghk(v,0.001,Cao,2) } DERIVATIVE state { rates(v) m'= (minf-m) / mtau h'= (hinf-h) / htau } INITIAL { rates(v) m = minf h = hinf } FUNCTION ghk( v(mV), ci(mM), co(mM), z) (millicoul/cm3) { LOCAL e, w w = v * (.001) * z*FARADAY / (R*(celsius+273.16)) if (fabs(w)>1e-4) { e = w / (exp(w)-1) } else : denominator is small -> Taylor series { e = 1-w/2 } ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e } PROCEDURE rates(v(mV)) { LOCAL m_alpha, m_beta m_alpha = 0.1194*(v+8.124)/(exp((v+8.124)/9.005)-1) m_beta = 2.97*exp(v/31.4) mtau = 1/(m_alpha+m_beta) htau = 14.77 minf = 1 / (1+exp((v+8.9)/-6.7)) hinf = 1 / (1+exp((v+13.4)/11.9)) }