UNITS { (mA) = (milliamp) (mV) = (millivolt) : hier eigene Befehle (molar) = (1/liter) (mM) = (millimolar) F = 96485 (coul) R = 8.3134 (joule/degC) } PARAMETER { v (mV) celsius (degC) PcanpqBar=.000154 (cm/s) ki=.00002 (mM) cai=5.e-5 (mM) cao = 10 (mM) q10m=11.45 q10Ampl=2.1 } NEURON { SUFFIX CAnpq USEION ca READ cai,cao WRITE ica RANGE PcanpqBar GLOBAL minf,taum } STATE { m } ASSIGNED { ica (mA/cm2) Pcanpq (cm/s) minf taum } INITIAL { rates(v) m = minf } UNITSOFF BREAKPOINT { LOCAL qAmpl qAmpl = q10Ampl^((celsius - 21)/10) SOLVE states METHOD cnexp Pcanpq = qAmpl*PcanpqBar*m*m ica = Pcanpq*ghk(v,cai,cao) } FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) { LOCAL a a=2*F*v/(R*(celsius+273.15)*1000) ghk=2*F/1000*(co - ci*exp(a))*func(a) } FUNCTION func(a) { if (fabs(a) < 1e-4) { func = -1 + a/2 }else{ func = a/(1-exp(a)) } } FUNCTION alpm(v(mV)) { :TABLE FROM -150 TO 150 WITH 200 alpm = 0.1967*(-1.0*(v-15)+19.88)/(exp((-1.0*(v-15)+19.88)/10.0)-1.0) } FUNCTION betm(v(mV)) { :TABLE FROM -150 TO 150 WITH 200 betm = 0.046*exp(-(v-15)/20.73) } DERIVATIVE states { rates(v) m' = (minf - m)/taum } PROCEDURE rates(v (mV)) { :callable from hoc LOCAL a, qm TABLE taum, minf FROM -150 TO 150 WITH 3000 qm = q10m^((celsius - 22)/10) a = alpm(v) taum = 1/((a + betm(v))*qm) minf = 1/(1+exp(-(v+11)/5.7)) ^0.5 } UNITSON