: $Id: IT_wang.mod,v 1.5 1994/04/14 01:28:26 billl Exp $ TITLE T-calcium channel : : T-type calcium channel : Differential equations : : Model of Wang et al., J neurophysiol., 66: 839, 1991 : Parameters from Destexhe & Babloyantz, 1992 : Q10 changed to 5 and 3 TEST : : Shift parameter for screening charge: 2 mV : : Reversal potential taken from Nernst Equation : : Written by Alain Destexhe, Salk Institute, Aug 1992 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX it USEION ca READ cai,cao WRITE ica RANGE gcabar, m_inf, tau_m, alph1, alph2, KK, shift } UNITS { (molar) = (1/liter) (mM) = (millimolar) (mA) = (milliamp) (mV) = (millivolt) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) celsius = 36 (degC) : eca = 120 (mV) gcabar = .0008 (mho/cm2) shift = 2 (mV) cai = 2.4e-4 (mM) : adjusted for eca=120 mV cao = 2 (mM) } STATE { m h d } ASSIGNED { ica (mA/cm2) carev (mV) m_inf tau_m (ms) alph1 (/ms) alph2 (/ms) KK phi_m phi_h } BREAKPOINT { SOLVE states METHOD runge carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai) ica = gcabar * m*m*m*h * (v - carev) } DERIVATIVE states { evaluate_fct(v) m' = (m_inf - m) / tau_m h' = alph1 * ( (1-h-d) - KK * h ) d' = alph2 * ( KK * (1-h-d) - d ) } UNITSOFF INITIAL { evaluate_fct(v) m = m_inf h = 1./(1. + KK + KK*KK) d = KK*KK/(1 + KK + KK*KK) : : Transformation to 36 deg assuming Q10 of 5 and 3 for m and h : (as in Coulter et al., J Physiol 414: 587, 1989) : phi_m = 5.0 ^ ((celsius-24)/10) phi_h = 3.0 ^ ((celsius-24)/10) } PROCEDURE evaluate_fct(v(mV)) { LOCAL tau2 : : The kinetic model of Wang et al. was constructed from the : data of Coulter et al., J Physiol 414: 587, 1989 which were : obtained at 24 dec C. Transformation to 36 deg is made : assuming Q10 of 5 and 3 for m and h, according to the : data of Coulter et al. The sigmoids and time constants : were shifted of 2 mV to account for screening charge. : m_inf = 1 / ( 1 + exp(-(v+shift+63)/7.8) ) tau_m = m_inf * ( 1.7 + exp(-(v+shift+28.8)/13.5) ) / phi_m alph1 = phi_h * exp(-(v+shift+160.3)/17.8) KK = sqrt( 0.25 + exp((v+shift+83.5)/6.3) ) - 0.5 tau2 = 240.0 / ( 1 + exp((v+shift+37.4)/30) ) / phi_h alph2 = 1 / ( tau2 * (KK+1) ) } UNITSON