TITLE decay of submembrane calcium concentration : Internal calcium concentration due to calcium currents and pump. : Differential equations. : : This file contains two mechanisms: : : 1. Simple model of ATPase pump with 3 kinetic constants (Destexhe 1992) : : Cai + P <-> CaP -> Cao + P (k1,k2,k3) : : A Michaelis-Menten approximation is assumed, which reduces the complexity : of the system to 2 parameters: : kt = * k3 -> TIME CONSTANT OF THE PUMP : kd = k2/k1 (dissociation constant) -> EQUILIBRIUM CALCIUM VALE : The values of these parameters are chosen assuming a high affinity of : the pump to calcium and a low transport capacity (cfr. Blaustein, : TINS, 11: 438, 1988, and references therein). : : For further information about this this mechanism, see Destexhe,A. : Babloysntz,A. and Sejnowski,TJ. Ionic mechanisms for intrinsic slow : oscillations in thalamic relay neurons. Biophys.J.65:1538-1552,1933. : : : 2. Simple first-order decay or buffering: : : Cai + B <->... : : which can be ritten as: : : dCai/dt = (cainf-Cai) / taur : : where cainf is the equilibrium intracellular calcium value (usually : inthe range of 200-300 nM) and tsur is the time constant of calcium : removal. The dynamics of submembranal calcium is usually thought to : be relativly fast, inthe 1-10 millisecond range (see Balaustein, : TINS, 11:438,1988). : : All variables are range variables : : Written by Alain Destexhe, Salk Institute,Nov 12,1992 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX cad USEION ca READ ica,cai WRITE cai RANGE depth,kt,kd,cainf,taur,icaadjust,camolflux,cabuff,capump } UNITS { (molar) = (1/liter) :moles do not appear in units (mM) = (millimolar) (um) = (micron) (mA) = (milliamp) (msM) = (ms mM) } CONSTANT{ FARADAY = 96489 (coul) : moles do not appear in units } PARAMETER { depth = .1 (um) : depth of shell taur = 1e10 (ms) : remove first-order decay cainf = 2.4e-4 (mM) kt = 1e-4 (mM/ms) kd = 1e-4 (mM) icaadjust = 1 cainit = 1e-4 (mM) capump = 1 cabuff = 1 camolflux = 1 } STATE { cai (mM) } INITIAL { cai = cainit } ASSIGNED{ ica (mA/cm2) drive_channel (mM/ms) drive_pump (mM/ms) } BREAKPOINT{ SOLVE state METHOD derivimplicit } DERIVATIVE state { drive_channel = -(10000)*(ica*icaadjust)/(2*FARADAY*depth) if(drive_channel <= 0.) {drive_channel = 0.}:cannot pump inward drive_pump = -kt*cai/(cai+kd) :Michaelis-Menten cai' = (camolflux * drive_channel) + (capump * drive_pump) + (cabuff * ((cainf-cai)/taur)) }