TITLE detailed model of glutamate NMDA receptors COMMENT ----------------------------------------------------------------------------- Kinetic model of NMDA receptors =============================== 5-state gating model: Clements & Westbrook 1991. Neuron 7: 605. Lester & Jahr 1992. J Neurosci 12: 635. Edmonds & Colquhoun 1992. Proc. R. Soc. Lond. B 250: 279. Hessler, Shirke & Malinow. 1993. Nature 366: 569. Clements et al. 1992. Science 258: 1498. C -- C1 -- C2 -- O | D Voltage dependence of Mg2+ block: Jahr & Stevens 1990. J Neurosci 10: 1830. Jahr & Stevens 1990. J Neurosci 10: 3178. ----------------------------------------------------------------------------- Based on voltage-clamp recordings of NMDA receptor-mediated currents in rat hippocampal slices (Hessler et al., Nature 366: 569-572, 1993), this model was fit directly to experimental recordings in order to obtain the optimal values for the parameters (see Destexhe, Mainen and Sejnowski, 1996). ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it is to be used in conjunction with a sepearate mechanism to describe the release of transmitter and that provides the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- See details in: Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling (2nd edition; edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25. (electronic copy available at http://cns.iaf.cnrs-gif.fr) Written by Alain Destexhe and Zach Mainen, 1995 ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS NMDA5 POINTER C RANGE C0, C1, C2, D, O, B RANGE g, gmax, rb GLOBAL Erev, mg, Rb, Ru, Rd, Rr, Ro, Rc GLOBAL vmin, vmax NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = 0 (mV) : reversal potential gmax = 500 (pS) : maximal conductance mg = 0 (mM) : external magnesium concentration vmin = -120 (mV) vmax = 100 (mV) : Rates : Destexhe, Mainen & Sejnowski, 1996 Rb = 5e-3 (/uM /ms) : binding Ru = 12.9e-3 (/ms) : unbinding Rd = 8.4e-3 (/ms) : desensitization Rr = 6.8e-3 (/ms) : resensitization Ro = 46.5e-3 (/ms) : opening Rc = 73.8e-3 (/ms) : closing } COMMENT : Clements et al. 1992 Rb = 5e-3 (/uM /ms) : binding Ru = 9.5e-3 (/ms) : unbinding Rd = 16e-3 (/ms) : desensitization Rr = 13e-3 (/ms) : resensitization Ro = 25e-3 (/ms) : opening Rc = 59e-3 (/ms) : closing : Hessler Shirke & Malinow 1993 Rb = 5e-3 (/uM /ms) : binding Ru = 9.5e-3 (/ms) : unbinding Rd = 16e-3 (/ms) : desensitization Rr = 13e-3 (/ms) : resensitization Ro = 25e-3 (/ms) : opening Rc = 59e-3 (/ms) : closing : Clements & Westbrook 1991 Rb = 5 (uM /s) : binding Ru = 5 (/s) : unbinding -> gives Kd = Rb/Ru = 1 uM Rd = 4.0 (/s) : desensitization Rr = 0.3 (/s) : resensitization Ro = 10 (/s) : opening Rc = 322 (/s) : closing : Edmonds & Colquhoun 1992 Rb = 5 (uM /s) : binding Ru = 4.7 (/s) : unbinding Rd = 8.4 (/s) : desensitization Rr = 1.8 (/s) : resensitization Ro = 46.5 (/s) : opening Rc = 91.6 (/s) : closing : Lester & Jahr 1992 Rb = 5 (uM /s) : binding Ru = 6.7 (/s) : unbinding Rd = 15.2 (/s) : desensitization Rr = 9.4 (/s) : resensitization Ro = 83.8 (/s) : opening Rc = 83.8 (/s) : closing ENDCOMMENT ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance C (mM) : pointer to glutamate concentration rb (/ms) : binding } STATE { : Channel states (all fractions) C0 : unbound C1 : single bound C2 : double bound D : desensitized O : open B : fraction free of Mg2+ block } INITIAL { rates(v) C0 = 1 } BREAKPOINT { rates(v) SOLVE kstates METHOD sparse g = gmax * O * B i = (1e-6) * g * (v - Erev) } KINETIC kstates { rb = Rb * (1e3) * C ~ C0 <-> C1 (rb,Ru) ~ C1 <-> C2 (rb,Ru) ~ C2 <-> D (Rd,Rr) ~ C2 <-> O (Ro,Rc) CONSERVE C0+C1+C2+D+O = 1 } PROCEDURE rates(v(mV)) { TABLE B DEPEND mg FROM vmin TO vmax WITH 200 : from Jahr & Stevens B = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM))) }