TITLE hyperpolarization-activated current (H-current) COMMENT Two distinct activation gates are assumed with the same asymptotic opening values, a fast gate (F) and a slow gate (S). The following kinetic scheme is assumed s0 --(Alpha)--> s1 + n Cai --(k1)--> s2 <--(Beta)--- <--(k2)-- f0 --(Alpha)--> f1 + n Cai --(k1)--> f2 <--(Beta)--- <--(k2)-- where s0/f0, s1/f1, and s2/f2 are resp. fraction of closed slow/fast gates, fraction of open unbound slow/fast gates, and fraction of open calcium-bound slow/fast gates, n is taken 2, and k1 = k2*C where C = (cai/cac)^n and cac is the critical value at which Ca2+ binding is half-activated. The total current is computed according ih = ghbar * (s1+s2) * (f1+f2) * (v-eh) ********************************************* reference: Destexhe, Babloyantz & Sejnowski (1993) Biophys.J. 65, 1538-1552 found in: thalamocortical neurons ********************************************* Maxim Bazhenov's first mod file Rewritten for MyFirstNEURON by Arthur Houweling ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX iH USEION h READ eh WRITE ih VALENCE 1 USEION ca READ cai RANGE ghbar, tau_s, tau_f, tau_c, ih GLOBAL cac } UNITS { (mA) = (milliamp) (mV) = (millivolt) (molar) = (1/liter) (mM) = (millimolar) } PARAMETER { v (mV) cai (mM) celsius (degC) : eh = -63 (mV) eh = -43 (mV) ghbar = 4e-6 (mho/cm2) : ghbar = 4e-5 (mho/cm2) cac = 5e-4 (mM) } STATE { s1 : fraction of open unbound slow gates s2 : fraction of open calcium-bound slow gates f1 : fraction of open unbound fast gates f2 : fraction of open calcium-bound fast gates } ASSIGNED { ih (mA/cm2) h_inf tau_s (ms) : time constant slow gate tau_f (ms) : time constant fast gate tau_c (ms) : time constant calcium binding alpha_s (1/ms) alpha_f (1/ms) beta_s (1/ms) beta_f (1/ms) C k2 (1/ms) tadj s0 : fraction of closed slow gates f0 : fraction of closed fast gates } BREAKPOINT { SOLVE states METHOD euler ih = ghbar * (s1+s2) * (f1+f2) * (v-eh) } UNITSOFF DERIVATIVE states { evaluate_fct(v,cai) s1' = alpha_s*s0 - beta_s*s1 + k2*(s2-C*s1) f1' = alpha_f*f0 - beta_f*f1 + k2*(f2-C*f1) s2' = -k2*(s2-C*s1) f2' = -k2*(f2-C*f1) s0 = 1-s1-s2 f0 = 1-f1-f2 } INITIAL { : Q10 assumed to be 3 tadj = 3^((celsius-35.5)/10) evaluate_fct(v,cai) s1 = alpha_s / (beta_s+alpha_s*(1+C)) s2 = alpha_s*C / (beta_s+alpha_s*(1+C)) s0 = 1-s1-s2 f1 = alpha_f / (beta_f+alpha_f*(1+C)) f2 = alpha_f*C / (beta_f+alpha_f*(1+C)) f0 = 1-f1-f2 tau_c = 1 / (1+C) / k2 : for plotting purposes } PROCEDURE evaluate_fct( v(mV), cai(mM)) { h_inf = 1 / (1+exp((v+68.9)/6.5)) tau_s = exp((v+183.6)/15.24) / tadj tau_f = exp((v+158.6)/11.2) / (1+exp((v+75)/5.5)) / tadj alpha_s = h_inf / tau_s alpha_f = h_inf / tau_f beta_s = (1-h_inf) / tau_s beta_f = (1-h_inf) / tau_f C = cai*cai/(cac*cac) k2 = 4e-4 * tadj } UNITSON