: $Id: ntt.mod,v 1.7 2003/12/11 00:37:51 billl Exp $ TITLE Low threshold calcium current : : Ca++ current responsible for low threshold spikes (LTS) : RETICULAR THALAMUS : Differential equations : : Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992. : The kinetics is described by standard equations (NOT GHK) : using a m2h format, according to the voltage-clamp data : (whole cell patch clamp) of Huguenard & Prince, J Neurosci. : 12: 3804-3817, 1992. : : - Kinetics adapted to fit the T-channel of reticular neuron : - Q10 changed to 5 and 3 : - Time constant tau_h fitted from experimental data : - shift parameter for screening charge : : ACTIVATION FUNCTIONS FROM EXPERIMENTS (NO CORRECTION) : : Reversal potential taken from Nernst Equation : : Written by Alain Destexhe, Salk Institute, Sept 18, 1992 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX it2 USEION Ca READ Cai, Cao WRITE iCa VALENCE 2 RANGE gcabar, g, shift1 GLOBAL m_inf, tau_m, h_inf, tau_h, shift2, sm, sh, phi_m, phi_h, hx, mx,rat } UNITS { (molar) = (1/liter) (mV) = (millivolt) (mA) = (milliamp) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) celsius = 36 (degC) : eCa = 120 (mV) gcabar = .024 (mho/cm2) shift1 = -1 (mV) shift2 = -6 (mV) sm = 7.4 sh = 5.0 hx = 1.5 mx = 3.0 Cai = 5e-5 (mM) : adjusted for eca=120 mV Cao = 2 (mM) rat = 1 } STATE { m h } ASSIGNED { iCa (mA/cm2) g (mho/cm2) carev (mV) m_inf tau_m (ms) h_inf tau_h (ms) phi_m phi_h } BREAKPOINT { SOLVE castate METHOD cnexp g = gcabar * m*m*h iCa = g * ghk(v, Cai, Cao) } DERIVATIVE castate { evaluate_fct(v) m' = (m_inf - m) / tau_m h' = (h_inf - h) / tau_h } UNITSOFF INITIAL { VERBATIM Cai = _ion_Cai; Cao = _ion_Cao; ENDVERBATIM : Activation functions and kinetics were obtained from : Huguenard & Prince, and were at 23-25 deg. : Transformation to 36 deg assuming Q10 of 5 and 3 for m and h : (as in Coulter et al., J Physiol 414: 587, 1989) : phi_m = mx ^ ((celsius-24)/10) phi_h = hx ^ ((celsius-24)/10) evaluate_fct(v) m = m_inf h = h_inf } PROCEDURE evaluate_fct(v(mV)) { : : Time constants were obtained from J. Huguenard : m_inf = 1.0 / ( 1 + exp(-(v+shift1+50)/sm) ) h_inf = 1.0 / ( 1 + exp((v+shift2+78)/sh) ) tau_m = (2+1.0/(exp((v+shift1+35)/10)+exp(-(v+shift1+100)/15)))/ phi_m tau_h = (24.22+1.0/(exp((v+55.56)/3.24)+exp(-(v+383.56)/51.26)))/phi_h } FUNCTION ghk(v(mV), Ci(mM), Co(mM)) (.001 coul/cm3) { LOCAL z, eci, eco z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15)) eco = Co*efun(z)*rat eci = Ci*efun(-z) :high Cao charge moves inward :negative potential charge moves inward ghk = (.001)*2*FARADAY*(eci - eco) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } UNITSON