TITLE Cerebellum Granule Cell Model COMMENT CaHVA channel Author: E.DAngelo, T.Nieus, A. Fontana Last revised: 8.5.2000 ENDCOMMENT NEURON { SUFFIX Golgi_Ca_HVA USEION ca READ eca WRITE ica RANGE gcabar, ica, g :RANGE alpha_s, beta_s, alpha_u, beta_u :RANGE Aalpha_s, Kalpha_s, V0alpha_s :RANGE Abeta_s, Kbeta_s, V0beta_s :RANGE Aalpha_u, Kalpha_u, V0alpha_u :RANGE Abeta_u, Kbeta_u, V0beta_u RANGE s_inf, tau_s, u_inf, tau_u RANGE s, u, tcorr } UNITS { (mA) = (milliamp) (mV) = (millivolt) } PARAMETER { Aalpha_s = 0.04944 (/ms) Kalpha_s = 15.87301587302 (mV) V0alpha_s = -29.06 (mV) Abeta_s = 0.08298 (/ms) Kbeta_s = -25.641 (mV) V0beta_s = -18.66 (mV) Aalpha_u = 0.0013 (/ms) Kalpha_u = -18.183 (mV) V0alpha_u = -48 (mV) Abeta_u = 0.0013 (/ms) Kbeta_u = 83.33 (mV) V0beta_u = -48 (mV) v (mV) gcabar= 460e-6 (mho/cm2) eca (mV) celsius (degC) Q10 = 3 } STATE { s u } ASSIGNED { ica (mA/cm2) s_inf u_inf tau_s (ms) tau_u (ms) g (mho/cm2) alpha_s (/ms) beta_s (/ms) alpha_u (/ms) beta_u (/ms) tcorr (1) } INITIAL { rate(v) s = s_inf u = u_inf } BREAKPOINT { SOLVE states METHOD derivimplicit g = gcabar*s*s*u ica = g*(v - eca) alpha_s = alp_s(v) beta_s = bet_s(v) alpha_u = alp_u(v) beta_u = bet_u(v) } DERIVATIVE states { rate(v) s' =(s_inf - s)/tau_s u' =(u_inf - u)/tau_u } FUNCTION alp_s(v(mV))(/ms) { tcorr = Q10^((celsius-20(degC))/10(degC)) alp_s = tcorr*Aalpha_s*exp((v-V0alpha_s)/Kalpha_s) } FUNCTION bet_s(v(mV))(/ms) { tcorr = Q10^((celsius-20(degC))/10(degC)) bet_s = tcorr*Abeta_s*exp((v-V0beta_s)/Kbeta_s) } FUNCTION alp_u(v(mV))(/ms) { tcorr = Q10^((celsius-20(degC))/10(degC)) alp_u = tcorr*Aalpha_u*exp((v-V0alpha_u)/Kalpha_u) } FUNCTION bet_u(v(mV))(/ms) { tcorr = Q10^((celsius-20(degC))/10(degC)) bet_u = tcorr*Abeta_u*exp((v-V0beta_u)/Kbeta_u) } PROCEDURE rate(v (mV)) {LOCAL a_s, b_s, a_u, b_u TABLE s_inf, tau_s, u_inf, tau_u DEPEND Aalpha_s, Kalpha_s, V0alpha_s, Abeta_s, Kbeta_s, V0beta_s, Aalpha_u, Kalpha_u, V0alpha_u, Abeta_u, Kbeta_u, V0beta_u, celsius FROM -100 TO 30 WITH 13000 a_s = alp_s(v) b_s = bet_s(v) a_u = alp_u(v) b_u = bet_u(v) s_inf = a_s/(a_s + b_s) tau_s = 1/(a_s + b_s) u_inf = a_u/(a_u + b_u) tau_u = 1/(a_u + b_u) }