TITLE Low threshold calcium current Cerebellum Golgi Cell Model : : Ca++ current responsible for low threshold spikes (LTS) : RETICULAR THALAMUS : Differential equations : : Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992. : The kinetics is described by standard equations (NOT GHK) : using a m2h format, according to the voltage-clamp data : (whole cell patch clamp) of Huguenard & Prince, J Neurosci. : 12: 3804-3817, 1992. The model was introduced in Destexhe et al. : J. Neurophysiology 72: 803-818, 1994. : See http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca : : - Kinetics adapted to fit the T-channel of reticular neuron : - Q10 changed to 5 and 3 : - Time constant tau_h fitted from experimental data : - shift parameter for screening charge : : ACTIVATION FUNCTIONS FROM EXPERIMENTS (NO CORRECTION) : : Reversal potential taken from Nernst Equation : : Written by Alain Destexhe, Salk Institute, Sept 18, 1992 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX Golgi_Ca_LVA USEION ca2 READ ca2i, ca2o WRITE ica2 VALENCE 2 RANGE g, gca2bar, m_inf, tau_m, h_inf, tau_h, shift RANGE ica2, m ,h, ca2rev RANGE phi_m, phi_h RANGE v0_m_inf,v0_h_inf,k_m_inf,k_h_inf,C_tau_m RANGE A_tau_m,v0_tau_m1,v0_tau_m2,k_tau_m1,k_tau_m2 RANGE C_tau_h ,A_tau_h ,v0_tau_h1,v0_tau_h2,k_tau_h1 ,k_tau_h2 } UNITS { (molar) = (1/liter) (mV) = (millivolt) (mA) = (milliamp) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) celsius (degC) eca2 (mV) gca2bar = 2.5e-4 (mho/cm2) shift = 2 (mV) : screening charge for Ca_o = 2 mM ca2i (mM) : adjusted for eca=120 mV ca2o (mM) v0_m_inf = -50 (mV) v0_h_inf = -78 (mV) k_m_inf = -7.4 (mV) k_h_inf = 5.0 (mv) C_tau_m = 3 A_tau_m = 1.0 v0_tau_m1 = -25 (mV) v0_tau_m2 = -100 (mV) k_tau_m1 = 10 (mV) k_tau_m2 = -15 (mV) C_tau_h = 85 A_tau_h = 1.0 v0_tau_h1 = -46 (mV) v0_tau_h2 = -405 (mV) k_tau_h1 = 4 (mV) k_tau_h2 = -50 (mV) } STATE { m h } ASSIGNED { ica2 (mA/cm2) ca2rev (mV) g (mho/cm2) m_inf tau_m (ms) h_inf tau_h (ms) phi_m phi_h } BREAKPOINT { SOLVE ca2state METHOD cnexp ca2rev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (ca2o/ca2i) g = gca2bar * m*m*h ica2 = gca2bar * m*m*h * (v-ca2rev) } DERIVATIVE ca2state { evaluate_fct(v) m' = (m_inf - m) / tau_m h' = (h_inf - h) / tau_h } UNITSOFF INITIAL { : : Activation functions and kinetics were obtained from : Huguenard & Prince, and were at 23-25 deg. : Transformation to 36 deg assuming Q10 of 5 and 3 for m and h : (as in Coulter et al., J Physiol 414: 587, 1989) : evaluate_fct(v) m = m_inf h = h_inf } PROCEDURE evaluate_fct(v(mV)) { : : Time constants were obtained from J. Huguenard : phi_m = 5.0 ^ ((celsius-24)/10) phi_h = 3.0 ^ ((celsius-24)/10) TABLE m_inf, tau_m, h_inf, tau_h DEPEND shift, phi_m, phi_h FROM -100 TO 30 WITH 13000 m_inf = 1.0 / ( 1 + exp((v + shift - v0_m_inf)/k_m_inf) ) h_inf = 1.0 / ( 1 + exp((v + shift - v0_h_inf)/k_h_inf) ) tau_m = ( C_tau_m + A_tau_m / ( exp((v+shift - v0_tau_m1)/ k_tau_m1) + exp((v+shift - v0_tau_m2)/k_tau_m2) ) ) / phi_m tau_h = ( C_tau_h + A_tau_h / ( exp((v+shift - v0_tau_h1)/k_tau_h1) + exp((v+shift - v0_tau_h2)/k_tau_h2) ) ) / phi_h } UNITSON