/* Created by Language version: 6.0.2 */ /* NOT VECTORIZED */ #include #include #include "scoplib.h" #undef PI #include "md1redef.h" #include "section.h" #include "nrnoc_ml.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #undef exp #define exp hoc_Exp extern double hoc_Exp(); /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); static double *_p; static Datum *_ppvar; #define delta_t dt #define gcalbar _p[0] #define ica _p[1] #define po _p[2] #define m _p[3] #define h _p[4] #define s _p[5] #define cai _p[6] #define eca _p[7] #define Dm _p[8] #define Dh _p[9] #define Ds _p[10] #define _g _p[11] #define _ion_cai *_ppvar[0].pval #define _ion_eca *_ppvar[1].pval #define _ion_ica *_ppvar[2].pval #define _ion_dicadv *_ppvar[3].pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif static int hoc_nrnpointerindex = -1; /* external NEURON variables */ extern double celsius; extern double dt; extern double t; /* declaration of user functions */ static int _hoc_alph(); static int _hoc_alpm(); static int _hoc_efun(); static int _hoc_ghk(); static int _hoc_h2(); static int _hoc_rates(); static int _mechtype; extern int nrn_get_mechtype(); static _hoc_setdata() { Prop *_prop, *hoc_getdata_range(); _prop = hoc_getdata_range("can"); _p = _prop->param; _ppvar = _prop->dparam; ret(1.); } /* connect user functions to hoc names */ static IntFunc hoc_intfunc[] = { "setdata_can", _hoc_setdata, "alph_can", _hoc_alph, "alpm_can", _hoc_alpm, "efun_can", _hoc_efun, "ghk_can", _hoc_ghk, "h2_can", _hoc_h2, "rates_can", _hoc_rates, 0, 0 }; #define alph alph_can #define alpm alpm_can #define efun efun_can #define ghk ghk_can #define h2 h2_can extern double alph(); extern double alpm(); extern double efun(); extern double ghk(); extern double h2(); /* declare global and static user variables */ #define hinf hinf_can double hinf = 0; #define ki ki_can double ki = 0.025; #define minf minf_can double minf = 0; #define s_inf s_inf_can double s_inf = 0; #define taumin taumin_can double taumin = 2; #define th0 th0_can double th0 = 75; #define tm0 tm0_can double tm0 = 1.5; #define vhalfh vhalfh_can double vhalfh = -40; #define vhalfm vhalfm_can double vhalfm = -21; #define zetah zetah_can double zetah = 2; #define zetam zetam_can double zetam = -3.4; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "ki_can", "mM", "vhalfm_can", "mV", "vhalfh_can", "mV", "tm0_can", "ms", "th0_can", "ms", "taumin_can", "ms", "gcalbar_can", "mho/cm2", "ica_can", "mA/cm2", 0,0 }; static double h0 = 0; static double m0 = 0; static double s0 = 0; static double v = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "ki_can", &ki, "zetam_can", &zetam, "zetah_can", &zetah, "vhalfm_can", &vhalfm, "vhalfh_can", &vhalfh, "tm0_can", &tm0, "th0_can", &th0, "taumin_can", &taumin, "minf_can", &minf, "hinf_can", &hinf, "s_inf_can", &s_inf, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static nrn_alloc(), nrn_init(), nrn_state(); static nrn_cur(), nrn_jacob(); static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol(); extern int nrn_cvode_; #define _cvode_ieq _ppvar[4]._i /* connect range variables in _p that hoc is supposed to know about */ static char *_mechanism[] = { "6.0.2", "can", "gcalbar_can", 0, "ica_can", "po_can", 0, "m_can", "h_can", "s_can", 0, 0}; static Symbol* _ca_sym; static nrn_alloc(_prop) Prop *_prop; { Prop *prop_ion, *need_memb(); double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 12); /*initialize range parameters*/ gcalbar = 0; _prop->param = _p; _prop->param_size = 12; _ppvar = nrn_prop_datum_alloc(_mechtype, 5); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ prop_ion = need_memb(_ca_sym); nrn_promote(prop_ion, 1, 1); _ppvar[0].pval = &prop_ion->param[1]; /* cai */ _ppvar[1].pval = &prop_ion->param[0]; /* eca */ _ppvar[2].pval = &prop_ion->param[3]; /* ica */ _ppvar[3].pval = &prop_ion->param[4]; /* _ion_dicadv */ } static _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; _can_reg() { int _vectorized = 0; _initlists(); ion_reg("ca", -10000.); _ca_sym = hoc_lookup("ca_ion"); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, _vectorized); _mechtype = nrn_get_mechtype(_mechanism[1]); hoc_register_dparam_size(_mechtype, 5); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 can /home/jg/ModelosNeuron/ProgramsNeuronCA1_JG/CleanVersion_CA1_JG_15Mar09/mechanism/x86_64/can.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static double FARADAY = 96485.3; static double R = 8.31342; static int _reset; static char *modelname = "N-type calcium channel "; static int error; static int _ninits = 0; static int _match_recurse=1; static _modl_cleanup(){ _match_recurse=1;} static rates(); static int _ode_spec1(), _ode_matsol1(); static int _slist1[3], _dlist1[3]; static int states(); double h2 ( _lcai ) double _lcai ; { double _lh2; _lh2 = ki / ( ki + _lcai ) ; return _lh2; } static int _hoc_h2() { double _r; _r = h2 ( *getarg(1) ) ; ret(_r); } double ghk ( _lv , _lci , _lco ) double _lv , _lci , _lco ; { double _lghk; double _lz , _leci , _leco ; _lz = ( 1e-3 ) * 2.0 * FARADAY * _lv / ( R * ( celsius + 273.15 ) ) ; _leco = _lco * efun ( _lz ) ; _leci = _lci * efun ( - _lz ) ; _lghk = ( .001 ) * 2.0 * FARADAY * ( _leci - _leco ) ; return _lghk; } static int _hoc_ghk() { double _r; _r = ghk ( *getarg(1) , *getarg(2) , *getarg(3) ) ; ret(_r); } double efun ( _lz ) double _lz ; { double _lefun; if ( fabs ( _lz ) < 1e-4 ) { _lefun = 1.0 - _lz / 2.0 ; } else { _lefun = _lz / ( exp ( _lz ) - 1.0 ) ; } return _lefun; } static int _hoc_efun() { double _r; _r = efun ( *getarg(1) ) ; ret(_r); } /*CVODE*/ static int _ode_spec1 () {_reset=0; { rates ( v , cai ) ; Dm = ( minf - m ) / tm0 ; Dh = ( hinf - h ) / th0 ; Ds = ( s_inf - s ) / taumin ; } return _reset; } static int _ode_matsol1() { rates ( v , cai ) ; Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tm0 )) ; Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / th0 )) ; Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / taumin )) ; } /*END CVODE*/ static int states () {_reset=0; { rates ( v , cai ) ; m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tm0)))*(- ( ( ( minf ) ) / tm0 ) / ( ( ( ( - 1.0) ) ) / tm0 ) - m) ; h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / th0)))*(- ( ( ( hinf ) ) / th0 ) / ( ( ( ( - 1.0) ) ) / th0 ) - h) ; s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taumin)))*(- ( ( ( s_inf ) ) / taumin ) / ( ( ( ( - 1.0) ) ) / taumin ) - s) ; } return 0; } static int rates ( _lv , _lcai ) double _lv , _lcai ; { double _la , _lb , _lalpha2 ; _la = alpm ( _lv ) ; minf = 1.0 / ( 1.0 + _la ) ; _lb = alph ( _lv ) ; hinf = 1.0 / ( 1.0 + _lb ) ; _lalpha2 = pow( ( ki / _lcai ) , 2.0 ) ; s_inf = _lalpha2 / ( _lalpha2 + 1.0 ) ; return 0; } static int _hoc_rates() { double _r; _r = 1.; rates ( *getarg(1) , *getarg(2) ) ; ret(_r); } double alpm ( _lv ) double _lv ; { double _lalpm; _lalpm = exp ( 1.e-3 * zetam * ( _lv - vhalfm ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ; return _lalpm; } static int _hoc_alpm() { double _r; _r = alpm ( *getarg(1) ) ; ret(_r); } double alph ( _lv ) double _lv ; { double _lalph; _lalph = exp ( 1.e-3 * zetah * ( _lv - vhalfh ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ; return _lalph; } static int _hoc_alph() { double _r; _r = alph ( *getarg(1) ) ; ret(_r); } static int _ode_count(_type) int _type;{ return 3;} static int _ode_spec(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; { _p = _pp; _ppvar = _ppd; v = NODEV(_nd); cai = _ion_cai; eca = _ion_eca; _ode_spec1(); } static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; { int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 3; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static int _ode_matsol(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; { _p = _pp; _ppvar = _ppd; v = NODEV(_nd); cai = _ion_cai; eca = _ion_eca; _ode_matsol1(); } static initmodel() { int _i; double _save;_ninits++; _save = t; t = 0.0; { h = h0; m = m0; s = s0; { rates ( v , cai ) ; m = minf ; h = hinf ; s = s_inf ; } _sav_indep = t; t = _save; } } static nrn_init(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; cai = _ion_cai; eca = _ion_eca; initmodel(); }} static double _nrn_current(_v) double _v;{double _current=0.;v=_v;{ { po = m * m * h ; ica = gcalbar * po * h2 ( cai ) * ( v - eca ) ; } _current += ica; } return _current; } static nrn_cur(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } cai = _ion_cai; eca = _ion_eca; _g = _nrn_current(_v + .001); { static double _dica; _dica = ica; _rhs = _nrn_current(_v); _ion_dicadv += (_dica - ica)/.001 ; } _g = (_g - _rhs)/.001; _ion_ica += ica ; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } }} static nrn_jacob(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } }} static nrn_state(_ml, _type) _Memb_list* _ml; int _type;{ double _break, _save; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _break = t + .5*dt; _save = t; delta_t = dt; v=_v; { cai = _ion_cai; eca = _ion_eca; { { for (; t < _break; t += delta_t) { error = states(); if(error){fprintf(stderr,"at line 71 in file can.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);} }} t = _save; } }} } static terminal(){} static _initlists() { int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p; _slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p; _slist1[2] = &(s) - _p; _dlist1[2] = &(Ds) - _p; _first = 0; }