/* Created by Language version: 6.0.2 */ /* NOT VECTORIZED */ #include #include #include "scoplib.h" #undef PI #include "md1redef.h" #include "section.h" #include "nrnoc_ml.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #undef exp #define exp hoc_Exp extern double hoc_Exp(); /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); static double *_p; static Datum *_ppvar; #define delta_t dt #define ar2 _p[0] #define gnabar _p[1] #define gkbar _p[2] #define gl _p[3] #define el _p[4] #define ina _p[5] #define ik _p[6] #define il _p[7] #define m _p[8] #define h _p[9] #define n _p[10] #define s _p[11] #define ena _p[12] #define ek _p[13] #define Dm _p[14] #define Dh _p[15] #define Dn _p[16] #define Ds _p[17] #define _g _p[18] #define _ion_ena *_ppvar[0].pval #define _ion_ina *_ppvar[1].pval #define _ion_dinadv *_ppvar[2].pval #define _ion_ek *_ppvar[3].pval #define _ion_ik *_ppvar[4].pval #define _ion_dikdv *_ppvar[5].pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif static int hoc_nrnpointerindex = -1; /* external NEURON variables */ extern double celsius; extern double dt; extern double t; /* declaration of user functions */ static int _hoc_alpv(); static int _hoc_alpr(); static int _hoc_betr(); static int _hoc_rates(); static int _hoc_varss(); static int _hoc_vartau(); static int _mechtype; extern int nrn_get_mechtype(); static _hoc_setdata() { Prop *_prop, *hoc_getdata_range(); _prop = hoc_getdata_range("hha2"); _p = _prop->param; _ppvar = _prop->dparam; ret(1.); } /* connect user functions to hoc names */ static IntFunc hoc_intfunc[] = { "setdata_hha2", _hoc_setdata, "alpv_hha2", _hoc_alpv, "alpr_hha2", _hoc_alpr, "betr_hha2", _hoc_betr, "rates_hha2", _hoc_rates, "varss_hha2", _hoc_varss, "vartau_hha2", _hoc_vartau, 0, 0 }; #define alpv alpv_hha2 #define alpr alpr_hha2 #define betr betr_hha2 #define varss varss_hha2 #define vartau vartau_hha2 extern double alpv(); extern double alpr(); extern double betr(); extern double varss(); extern double vartau(); /* declare global and static user variables */ #define a0r a0r_hha2 double a0r = 0.0003; #define b0r b0r_hha2 double b0r = 0.0003; #define gmr gmr_hha2 double gmr = 0.2; #define inf inf_hha2 double inf[4]; #define taumin taumin_hha2 double taumin = 3; #define tau tau_hha2 double tau[4]; #define vvh vvh_hha2 double vvh = -58; #define vhalfr vhalfr_hha2 double vhalfr = -60; #define vvs vvs_hha2 double vvs = 2; #define zetas zetas_hha2 double zetas = 12; #define zetar zetar_hha2 double zetar = 12; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "a0r_hha2", "/ms", "b0r_hha2", "/ms", "taumin_hha2", "ms", "vvs_hha2", "mV", "vhalfr_hha2", "mV", "vvh_hha2", "mV", "tau_hha2", "ms", "gnabar_hha2", "mho/cm2", "gkbar_hha2", "mho/cm2", "gl_hha2", "mho/cm2", "el_hha2", "mV", "ina_hha2", "mA/cm2", "ik_hha2", "mA/cm2", "il_hha2", "mA/cm2", 0,0 }; static double h0 = 0; static double m0 = 0; static double n0 = 0; static double s0 = 0; static double v = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "a0r_hha2", &a0r, "b0r_hha2", &b0r, "zetar_hha2", &zetar, "zetas_hha2", &zetas, "gmr_hha2", &gmr, "taumin_hha2", &taumin, "vvs_hha2", &vvs, "vhalfr_hha2", &vhalfr, "vvh_hha2", &vvh, 0,0 }; static DoubVec hoc_vdoub[] = { "inf_hha2", inf, 4, "tau_hha2", tau, 4, 0,0,0 }; static double _sav_indep; static nrn_alloc(), nrn_init(), nrn_state(); static nrn_cur(), nrn_jacob(); static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol(); extern int nrn_cvode_; #define _cvode_ieq _ppvar[6]._i /* connect range variables in _p that hoc is supposed to know about */ static char *_mechanism[] = { "6.0.2", "hha2", "ar2_hha2", "gnabar_hha2", "gkbar_hha2", "gl_hha2", "el_hha2", 0, "ina_hha2", "ik_hha2", "il_hha2", 0, "m_hha2", "h_hha2", "n_hha2", "s_hha2", 0, 0}; static Symbol* _na_sym; static Symbol* _k_sym; static nrn_alloc(_prop) Prop *_prop; { Prop *prop_ion, *need_memb(); double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 19); /*initialize range parameters*/ ar2 = 1; gnabar = 0; gkbar = 0; gl = 0; el = -70; _prop->param = _p; _prop->param_size = 19; _ppvar = nrn_prop_datum_alloc(_mechtype, 7); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ prop_ion = need_memb(_na_sym); nrn_promote(prop_ion, 0, 1); _ppvar[0].pval = &prop_ion->param[0]; /* ena */ _ppvar[1].pval = &prop_ion->param[3]; /* ina */ _ppvar[2].pval = &prop_ion->param[4]; /* _ion_dinadv */ prop_ion = need_memb(_k_sym); nrn_promote(prop_ion, 0, 1); _ppvar[3].pval = &prop_ion->param[0]; /* ek */ _ppvar[4].pval = &prop_ion->param[3]; /* ik */ _ppvar[5].pval = &prop_ion->param[4]; /* _ion_dikdv */ } static _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; _hha2_reg() { int _vectorized = 0; _initlists(); ion_reg("na", -10000.); ion_reg("k", -10000.); _na_sym = hoc_lookup("na_ion"); _k_sym = hoc_lookup("k_ion"); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, _vectorized); _mechtype = nrn_get_mechtype(_mechanism[1]); hoc_register_dparam_size(_mechtype, 7); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 hha2 /home/jg/ModelosNeuron/ProgramsNeuronCA1_JG/CleanVersion_CA1_JG_15Mar09/mechanism/x86_64/hha2.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = "HH channel that includes both a sodium and a delayed rectifier channel"; static int error; static int _ninits = 0; static int _match_recurse=1; static _modl_cleanup(){ _match_recurse=1;} static rates(); static int _ode_spec1(), _ode_matsol1(); static int _slist1[4], _dlist1[4]; static int states(); /*CVODE*/ static int _ode_spec1 () {_reset=0; { rates ( v , ar2 ) ; Dm = ( inf [ 0 ] - m ) / tau [ 0 ] ; Dh = ( inf [ 1 ] - h ) / tau [ 1 ] ; Dn = ( inf [ 2 ] - n ) / tau [ 2 ] ; Ds = ( inf [ 3 ] - s ) / tau [ 3 ] ; } return _reset; } static int _ode_matsol1() { rates ( v , ar2 ) ; Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau[0] )) ; Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau[1] )) ; Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau[2] )) ; Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau[3] )) ; } /*END CVODE*/ static int states () {_reset=0; { rates ( v , ar2 ) ; m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau[0])))*(- ( ( ( inf[0] ) ) / tau[0] ) / ( ( ( ( - 1.0) ) ) / tau[0] ) - m) ; h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau[1])))*(- ( ( ( inf[1] ) ) / tau[1] ) / ( ( ( ( - 1.0) ) ) / tau[1] ) - h) ; n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau[2])))*(- ( ( ( inf[2] ) ) / tau[2] ) / ( ( ( ( - 1.0) ) ) / tau[2] ) - n) ; s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau[3])))*(- ( ( ( inf[3] ) ) / tau[3] ) / ( ( ( ( - 1.0) ) ) / tau[3] ) - s) ; } return 0; } static int rates ( _lv , _la2 ) double _lv , _la2 ; { double _ltmp , _lc ; {int _li ;for ( _li = 0 ; _li <= 2 ; _li ++ ) { tau [ _li ] = vartau ( _lv , ((double) _li ) ) ; inf [ _li ] = varss ( _lv , ((double) _li ) ) ; } } tau [ 3 ] = betr ( _lv ) / ( a0r * ( 1.0 + alpr ( _lv ) ) ) ; if ( tau [ 3 ] < taumin ) { tau [ 3 ] = taumin ; } _lc = alpv ( _lv ) ; inf [ 3 ] = _lc + _la2 * ( 1.0 - _lc ) ; return 0; } static int _hoc_rates() { double _r; _r = 1.; rates ( *getarg(1) , *getarg(2) ) ; ret(_r); } double varss ( _lv , _li ) double _lv , _li ; { double _lvarss; if ( _li == 0.0 ) { _lvarss = 1.0 / ( 1.0 + exp ( ( _lv + 44.0 ) / ( - 3.0 ) ) ) ; } else if ( _li == 1.0 ) { _lvarss = 1.0 / ( 1.0 + exp ( ( _lv + 49.0 ) / ( 3.5 ) ) ) ; } else if ( _li == 2.0 ) { _lvarss = 1.0 / ( 1.0 + exp ( ( _lv + 46.3 ) / ( - 3.0 ) ) ) ; } return _lvarss; } static int _hoc_varss() { double _r; _r = varss ( *getarg(1) , *getarg(2) ) ; ret(_r); } double alpv ( _lv ) double _lv ; { double _lalpv; _lalpv = 1.0 / ( 1.0 + exp ( ( _lv - vvh ) / vvs ) ) ; return _lalpv; } static int _hoc_alpv() { double _r; _r = alpv ( *getarg(1) ) ; ret(_r); } double alpr ( _lv ) double _lv ; { double _lalpr; _lalpr = exp ( 1.e-3 * zetar * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ; return _lalpr; } static int _hoc_alpr() { double _r; _r = alpr ( *getarg(1) ) ; ret(_r); } double betr ( _lv ) double _lv ; { double _lbetr; _lbetr = exp ( 1.e-3 * zetar * gmr * ( _lv - vhalfr ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ; return _lbetr; } static int _hoc_betr() { double _r; _r = betr ( *getarg(1) ) ; ret(_r); } double vartau ( _lv , _li ) double _lv , _li ; { double _lvartau; double _ltmp ; if ( _li == 0.0 ) { _lvartau = 0.05 ; } else if ( _li == 1.0 ) { _lvartau = 1.0 ; } else if ( _li == 2.0 ) { _lvartau = 3.5 ; } return _lvartau; } static int _hoc_vartau() { double _r; _r = vartau ( *getarg(1) , *getarg(2) ) ; ret(_r); } static int _ode_count(_type) int _type;{ return 4;} static int _ode_spec(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; { _p = _pp; _ppvar = _ppd; v = NODEV(_nd); ena = _ion_ena; ek = _ion_ek; _ode_spec1(); } static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; { int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 4; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static int _ode_matsol(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; { _p = _pp; _ppvar = _ppd; v = NODEV(_nd); ena = _ion_ena; ek = _ion_ek; _ode_matsol1(); } static initmodel() { int _i; double _save;_ninits++; _save = t; t = 0.0; { h = h0; m = m0; n = n0; s = s0; { rates ( v , ar2 ) ; m = inf [ 0 ] ; h = inf [ 1 ] ; n = inf [ 2 ] ; s = inf [ 3 ] ; } _sav_indep = t; t = _save; } } static nrn_init(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; ena = _ion_ena; ek = _ion_ek; initmodel(); }} static double _nrn_current(_v) double _v;{double _current=0.;v=_v;{ { ina = gnabar * m * m * h * s * ( v - ena ) ; ik = gkbar * n * n * ( v - ek ) ; il = gl * ( v - el ) ; } _current += ina; _current += ik; _current += il; } return _current; } static nrn_cur(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } ena = _ion_ena; ek = _ion_ek; _g = _nrn_current(_v + .001); { static double _dik; static double _dina; _dina = ina; _dik = ik; _rhs = _nrn_current(_v); _ion_dinadv += (_dina - ina)/.001 ; _ion_dikdv += (_dik - ik)/.001 ; } _g = (_g - _rhs)/.001; _ion_ina += ina ; _ion_ik += ik ; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } }} static nrn_jacob(_ml, _type) _Memb_list* _ml; int _type;{ Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } }} static nrn_state(_ml, _type) _Memb_list* _ml; int _type;{ double _break, _save; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _break = t + .5*dt; _save = t; delta_t = dt; v=_v; { ena = _ion_ena; ek = _ion_ek; { { for (; t < _break; t += delta_t) { error = states(); if(error){fprintf(stderr,"at line 79 in file hha2.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);} }} t = _save; } }} } static terminal(){} static _initlists() { int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p; _slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p; _slist1[2] = &(n) - _p; _dlist1[2] = &(Dn) - _p; _slist1[3] = &(s) - _p; _dlist1[3] = &(Ds) - _p; _first = 0; }