// $Id: pywrap.hoc,v 1.31 2012/08/04 03:19:13 samn Exp $ //* variables declare("INITPYWRAP",0) // whether initialized properly //* initialize pywrap if(2!=name_declared("p")) { print "pywrap.hoc: loading python.hoc" load_file("python.hoc") } func initpywrap () { localobj pjnk INITPYWRAP=0 if(2!=name_declared("p")){printf("initpywrap ERR0A: PythonObject p not found in python.hoc!\n") return 0} print p pjnk=new PythonObject() if(!isojt(p,pjnk)){printf("initpywrap ERR0B: PythonObject p not found in python.hoc!\n")} if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return 0} INITPYWRAP=1 return 1 } initpywrap() //** pypmtm(vec,samplingrate[,nw]) // this function calls python version of pmtm, runs multitaper power spectra, returns an nqs obfunc pypmtm () { local sampr,spc,nw localobj vin,str,nqp,ptmp if(!INITPYWRAP) {printf("pypmtm ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from mtspec import *")) {printf("pypmtm ERR0B: could not import mtspec python library!\n") return nil} /* if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return nil}*/ if(numarg()==0) {printf("pypmtm(vec,samplingrate)\n") return nil} vin=$o1 sampr=$2 str=new String() p.vjnk = vin.to_python() p.vjnk = p.numpy.array(p.vjnk) spc = 1.0 / sampr // "spacing" nw=4 if(numarg()>2) nw=$3 sprint(str.s,"[Pxx,w]=mtspec(vjnk,%g,%d)",spc,nw) nrnpython(str.s) nqp=new NQS("f","pow") nqp.v.from_python(p.w) nqp.v[1].from_python(p.Pxx) return nqp } //** pybspow(vec,samplingrate[,maxf,pord]) // this function calls python version of bsmart, to get power pectrum, returns an nqs // pord is order of polynomial -- higher == less smoothing. default is 12 obfunc pybspow () { local sampr,pord,maxf localobj vin,str,nqp,ptmp if(!INITPYWRAP) {printf("pybspow ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from spectrum import ar")) {printf("pybspow ERR0B: could not import spectrum python library!\n") return nil} if(numarg()==0) {printf("pybspow(vec,samplingrate)\n") return nil} vin=$o1 sampr=$2 str=new String() if(numarg()>2) maxf=$3 else maxf=sampr/2 if(numarg()>3) pord=$4 else pord=64 p.vjnk = vin.to_python() p.vjnk = p.numpy.array(p.vjnk) sprint(str.s,"Pxx,F=ar(vjnk,rate=%g,order=%d,maxfreq=%g)",sampr,pord,maxf) nrnpython(str.s) nqp=new NQS("f","pow") nqp.v[0].from_python(p.F) nqp.v[1].from_python(p.Pxx) return nqp } //** pyspecgram(vec,samplingrate[,orows]) // this function calls python version of specgram, returns an nqs obfunc pyspecgram () { local sampr,spc,i,j,sz,f,tt,orows,a localobj vin,str,nqp,ptmp,vtmp if(!INITPYWRAP) {printf("pyspecgram ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from matplotlib.mlab import specgram")) {printf("pyspecgram ERR0B: could not import specgram from matplotlib.mlab!\n") return nil} if(numarg()==0) {printf("pyspecgram(vec,samplingrate)\n") return nil} a=allocvecs(vtmp) vin=$o1 sampr=$2 str=new String() if(numarg()>2)orows=$3 else orows=1 p.vjnk = vin.to_python() p.vjnk = p.numpy.array(p.vjnk) sprint(str.s,"[Pxx,freqs,tt]=specgram(vjnk,Fs=%g)",sampr) nrnpython(str.s) if(orows) { {nqp=new NQS("f","pow") nqp.odec("pow")} {sz=p.Pxx.shape[0] nqp.clear(sz)} for i=0,sz-1 { {vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]} nqp.append(f,vtmp) } } else { nqp=new NQS("f","pow","t") sz = p.Pxx.shape[0] nqp.clear(sz * p.Pxx.shape[1]) for i=0,sz-1 { {vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]} for j=0,vtmp.size-1 nqp.append(f,vtmp.x(j),p.tt[j]) } } dealloc(a) return nqp } //** pycsd(vec1,vec2,samplingrate) // this function calls python version of csd (cross-spectral density) // returns an nqs with csd -- csd is non-directional obfunc pycsd () { local sampr,a localobj v1,v2,str,nqp if(!INITPYWRAP) {printf("pycsd ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from matplotlib.mlab import csd")) {printf("pycsd ERR0B: could not import csd from matplotlib.mlab!\n") return nil} if(numarg()==0) {printf("pycsd(vec,samplingrate)\n") return nil} v1=$o1 v2=$o2 sampr=$3 str=new String() {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)} {p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)} sprint(str.s,"[Pxy,freqs]=csd(vjnk1,vjnk2,Fs=%g)",sampr) nrnpython(str.s) nqp=new NQS("f","pow") nqp.v[0].from_python(p.freqs) nqp.v[1].from_python(p.Pxy) return nqp } //** pypsd(vec,samplingrate[,NFFT]) // this function calls python version of psd (power-spectral density) // returns an nqs with psd obfunc pypsd () { local sampr,NFFT localobj v1,str,nqp if(!INITPYWRAP) {printf("pypsd ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from matplotlib.mlab import psd")) {printf("pypsd ERR0B: could not import psd from matplotlib.mlab!\n") return nil} // nrnpython("from matplotlib.mlab import window_none") if(numarg()==0) {printf("pypsd(vec,samplingrate)\n") return nil} v1=$o1 sampr=$2 str=new String() {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)} if(numarg()>2) NFFT=$3 else NFFT=v1.size if(sz%2==1) sz+=1 sprint(str.s,"[Pxx,freqs]=psd(vjnk1,Fs=%g,NFFT=%d)",sampr,NFFT) nrnpython(str.s) nqp=new NQS("f","pow") nqp.v[0].from_python(p.freqs) nqp.v[1].from_python(p.Pxx) return nqp } //** pycohere(vec1,vec2,samplingrate) // this function calls python version of cohere (coherence is normalized csd btwn vec1, vec2) // returns an nqs with coherence obfunc pycohere () { local sampr,a localobj v1,v2,str,nqp if(!INITPYWRAP) {printf("pycohere ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from matplotlib.mlab import cohere")) {printf("pycohere ERR0B: could not import cohere from matplotlib.mlab!\n") return nil} if(numarg()==0) {printf("pycohere(vec1,vec2,samplingrate)\n") return nil} v1=$o1 v2=$o2 sampr=$3 str=new String() {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)} {p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)} sprint(str.s,"[Pxy,freqs]=cohere(vjnk1,vjnk2,Fs=%g)",sampr) nrnpython(str.s) nqp=new NQS("f","coh") nqp.v[0].from_python(p.freqs) nqp.v[1].from_python(p.Pxy) return nqp } //* pypca(matrix) - does PCA on input matrix and returns scores (projections onto PCs) // rows of the matrix are observations, columns are 'features' or 'dimensions' obfunc pypca () { local r,c,a localobj inm,inmT,vin,vout,str,mout if(!INITPYWRAP) {printf("pypca ERR0A: python.hoc not initialized properly\n") return nil} if(!nrnpython("from princomp import PCA")) {printf("pypca ERR0B: could not import PCA!\n") return nil} if(!nrnpython("import numpy as np")){printf("pypca ERR0C: could not import numpy as np!\n") return nil} str=new String2() if(numarg()<1) {printf("pypca(Vector,rows,cols)\n") return nil} a=allocvecs(vin,vout) {inm=$o1 r=inm.nrow c=inm.ncol} inmT = inm.transpose() // transpose since to_vector goes in column ordering {vin.resize(r*c) inmT.to_vector(vin)} p.vjnk = vin.to_python() // convert to python format sprint(str.s,"vjnk=np.resize(vjnk,(%d,%d))",r,c) if(!nrnpython(str.s)){printf("pypca ERR0D: could not run %s\n",str.s) dealloc(a) return nil} if(!nrnpython("mypca=PCA(vjnk)")){printf("pypca ERR0E: could not run PCA\n") dealloc(a) return nil} if(!nrnpython("score=mypca.Y")){printf("pypca ERR0F: could not set scores\n") dealloc(a) return nil} sprint(str.s,"score=np.resize(score,(%d,1))",r*c) if(!nrnpython(str.s)){printf("pypca ERR0E: could not run %s\n",str.s) dealloc(a) return nil} vout.from_python(p.score) // convert to a hoc Vector mout=new Matrix(c,r)//output as a matrix. NB: c,r are reversed from original for following transpose mout.from_vector(vout)//from_vector uses column ordering mout = mout.transpose()//so need to transpose dealloc(a) return mout } //* pyspecck(vec,sampr[,maxf,win]) - call ck's spectrogram.py // vec = time-series. sampr = sampling rate (Hz). // maxf = max frequency. win = window size (seconds) for specgram chunks // system call to spectrogram.py file to display a spectrogram, writes temp // file and then deletes it... func pyspecck () { local i,sampr,maxf,win localobj fp,vec,str vec=$o1 sampr=$2 if(numarg()>2)maxf=$3 else maxf=sampr/2 if(numarg()>3)win=$4 else win=1 str=new String2() fp=new File() if(!fp.mktemp()){printf("pyspecck ERR0: couldn't make temp file!\n") return 0} str.s=fp.getname() fp.wopen(str.s) for i=0,vec.size-1 fp.printf("%g\n",vec.x(i)) fp.close() sprint(str.t,"/usr/site/nrniv/local/python/spectrogram.py %s %g %g %g",str.s,sampr,maxf,win) print str.t system(str.t) fp.unlink() return 1 } //* pykstest(vec1,vec2) - perform a two-sample, two-sided kolmogorov-smirnov test // and return the p-value. kstest checks if values in vec1,vec2 come from same distribution (null hypothesis) // returns -1 on failure. uses scipy.stats.ks_2samp function func pykstest () { localobj v1,v2 if(!INITPYWRAP) {printf("pykstest ERR0A: python.hoc not initialized properly\n") return -1} {v1=$o1 v2=$o2} if(!nrnpython("from scipy.stats import ks_2samp")) return -1 {p.v1=v1.to_python() p.v2=v2.to_python()} if(!nrnpython("(D,pval)=ks_2samp(v1,v2)")) return -1 return p.pval }