// $Id: network.hoc,v 1.126 2010/12/29 03:14:37 cliffk Exp $ print "Loading network.hoc..." // Parameters for controlling where connectivity comes from loadsaveconnectivity=0 // Whether to make (0), load (1), or save (2) the connectivity table //* Numbers and connectivity params {declare("scale",1)} {declare("colW",1,"colH",1,"torus",0)} {declare("numcols",colW*colH)} {declare("dbgcols",0)} // whether to debug columns by making them have the same wiring and inputs {declare("colr",2)} // maximal trans-column projection distance; 0 within col; 1 next col etc {declare("colnq","o[5]","lcol",new List())} {declare("thalamusOn", 0)} // 1 = thalamic cells connected, 0 = completely disconnects all thalamic cells {declare("autotune",0)} // From stccol {declare("useSTDP",0)} // From stccol -- turn STDP on by default {sprint(tstr,"o[%d]",numcols) declare("col",tstr)} {sprint(tstr,"o[%d][%d]",colH,colW) declare("gcol",tstr)} // 2D column grid double div[CTYPi][CTYPi][colr+1]//div[i][j]==# of outputs from type i->j double wmat[CTYPi][CTYPi][STYPi][colr+1] // wmat[i][j][k]==weight from type i->j for synapse k double delm[CTYPi][CTYPi]//avg. delay from type i->j double deld[CTYPi][CTYPi]//delay variance from type i->j double conv[CTYPi][CTYPi][colr+1] dosetpmat=name_declared("pmat")==0 {sprint(tstr,"d[%d][%d][%d]",CTYPi,CTYPi,colr+1) declare("pmat",tstr)} double prumat[CTYPi][CTYPi] //pruning matrix:prumat[i][j] specifies ratio (0-1) of synapses to prune double sprmat[CTYPi][CTYPi] //sprouting matrix:sprmat[i][j] specifies ratio (0-1) to sprout i->j pathway with double synloc[CTYPi][CTYPi]//location of synapses //* swire & related column variables -- from stccol declare("colside",400*sqrt(scale)) // column diameter in micrometers declare("swire",0) // whether to use 'spatial' wiring, 2 means use swirecut declare("checkers",0) // whether to arrange cells in checkerboard pattern declare("EEsq",(colside/2)^2,"EIsq",(colside/2)^2,"IEsq",(colside/1)^2,"IIsq",(colside/2)^2) // params for swirecut declare("slambda",15) double dels[CTYPi][CTYPi]//[STYPi] //stdev of delays double delv[CTYPi][CTYPi]//variance of delays double vcond[CTYPi][CTYPi]//[STYPi] //conduction velocities declare("layerzvar",500) // range of z location of cells in a layer (in micrometers); CK: was 25 declare("colxydist",50) // distance between adjacent columns (x,y) declare("vlayerz",new Vector(CTYPi)) declare("pseed",4321) declare("dvcond","d[2]") //intra layer conduction delays declare("maxsfall",0.001) // max fall-off in prob of connection @ opposite side of column (used by swire) declare("axonalvelocity",10000) // axonal velocity in um/ms -- this is 10 mm/s dvcond[0] = 1 //if presynaptic cell is excit, conduction delay == 1.0 m/s dvcond[1] = 0.4 //if presynaptic cell is inhib, conduction delay == 0.4 m/s // <-- stccol //* other variables declare("mknetnqss",1) // whether COLUMN should make connsnq,cellsnq declare("EEGain",4*15/11*eemod,"EIGain",15*eimod,"IEGain",4*15/11*iemod,"IIGain",4*15/11*iimod) declare("NMAMR",0.1,"EENMGain",1,"EIGainInterC",0.125,"EEGainInterC",0.325*0.5) declare("TCNM",0) // whether TC->NM2 on declare("E2I4",0) // whether E2 hits I4 declare("E5IRE",0) // whether E5R,E5B hits IRE in neighboring columns declare("SMFCTR",10) // multiplier for # of SM cells if(autotune) { seadsetting_INTF6 = 2 wsetting_INTF6 = 1 // use sywv during sim } else if(useSTDP) { seadsetting_INTF6 = 3 // use plasticity } else { seadsetting_INTF6 = 2 // fixed weights } wsetting_INTF6 = 1 // use sywv during sim (needed z-dependent efferent weights) declare("wnqstr","") // intracol wiring NQS (single column) if (loadsaveconnectivity==1) wnqstr="connectivity.nqs" // CK: Load NQS from file // stccol --> //* prdiv() - print div proc prdiv () { local ii,jj for ii=0,CTYPi-1 for jj=0,CTYPi-1 if(div[ii][jj][0]) { printf("div[%s][%s][0]=%g\n",CTYP.o(ii).s,CTYP.o(jj).s,div[ii][jj][0]) } } // %con (con/pre) = %div (div/post) DEAD_DIV_INTF6=0 {declare("jcn",1)} {declare("disinhib",0)} //iff==1 , turn off inhibition, by setting wmat[I%d][...]==0 in inhiboff() {declare("scale",1)} declare("dstr",datestr,"setdviPT",NORM) batch_flag=1 // CK: yes, use batch (=1); was: {declare("params","not batch","ofile",output_file)} {declare("dvseed",534023)} // seed for wiring dosetcpercol=name_declared("cpercol")==0 // whether to set values in cpercol or use user-supplied values {sprint(tstr,"d[%d]",CTYPi) declare("cpercol",tstr)} // cells of a specific type per column {declare("vcpercol",new Vector(CTYPi))} // <-- stccol sprint(tstr,"d[%d][%d]",CTYPi,CTYPi) if(!(i=name_declared("delmscale"))) { declare("delmscale",tstr) // scale delm values by this # } if(!i) { for i=0,CTYPi-1 for j=0,CTYPi-1 delmscale[i][j]=1 } //** mklayerz -- get average z location of a layer, based on frana and tononi // returns value in micrometers. 0 is at top (layer 1), max val // is at layer 6 ... actual #s don't matter, only distances between // the layers matters... // Layers are defined in nqsnet.hoc, "layer" procedure proc mkvlayerz () { local i,vl, cortthaldist cortthaldist=50000 // CK: WARNING, KLUDGY -- Distance from relay nucleus to cortex -- ~5 cm = 50,000 um vlayerz.indgen(0,CTYPi-1,1) vlayerz.apply("layer") for vtr(&vl,vlayerz,&i) { if(int(vl) == 2 || int(vl) == 3) {vlayerz.x(i)=1740+cortthaldist // average of 1540+1940 from frana } else if(int(vl) == 4) {vlayerz.x(i) = (1740+1130)/2+cortthaldist // Halfway between 2/3 and 5 } else if(int(vl) == 5) {vlayerz.x(i) = 1130+cortthaldist } else if(int(vl) == 6) {vlayerz.x(i) = 488+cortthaldist } else if(int(vl) == 7) {vlayerz.x(i) = 300// WARNING, KLUDGY: guess distance from relay to reticular nuclei } else if(int(vl) == 8) {vlayerz.x(i) = 0 } else {vlayerz.x(i) = -1000} // This shold never happen } } // stccol --> //* setcpercol - set # of cells per column proc setcpercol () { local i // (/u/samn/vcsim/notebook.dol_1:24562)(notebook.dol_1:24492) if(dosetcpercol) { // if user didn't supply values (default), set # of cells of a type per column cpercol[E2] = 150 * scale cpercol[I2] = 25 * scale cpercol[I2L] = 25 * scale cpercol[E5R] = 167 * scale cpercol[E5B] = 72 * scale cpercol[I5] = 40 * scale cpercol[I5L] = 40 * scale cpercol[E6] = 192 * scale cpercol[I6] = 32 * scale cpercol[I6L] = 32 * scale if (thalamusOn == 1) { cpercol[TC] = 10 * scale cpercol[IRE] = 10 * scale } /* cpercol[SM] = SMFCTR * cpercol[TC] * scale // CK: Let's just ignore somatosensory for now*/ } {vcpercol.resize(CTYPi) vcpercol.fill(0)} // store the values in a vector for i=0,CTYPi-1 vcpercol.x(i)=cpercol[i] } //* setpmat() proc setpmat () { local pre,po,ii,jj,kk if(!dosetpmat) return // if pmat setup by user (in notebook), then don't reset its values for ii=0,CTYPi-1 for jj=0,CTYPi-1 for kk=0,1 pmat[ii][jj][kk]=0 // Add connections to/from the thalamus if (thalamusOn == 1) { // SM = skin. SM -> TC pmat[SM][TC][0] = 0.5 / 6 pmat[SM][TC][1] = 0.5 / 6 pmat[SM][TC][2] = 0.5 / 6 pmat[E6][TC][0] = 0.1 pmat[E6][IRE][0] = 0.1 pmat[TC][IRE][0] = 0.4 pmat[IRE][IRE][0] = 0.1 pmat[IRE][TC][0] = 0.3 pmat[TC][E2][0] = 0.1 pmat[TC][E4][0] = 0.2 pmat[TC][E5B][0] = 0.1 pmat[TC][E5R][0] = 0.1 pmat[TC][E6][0] = 0.1 pmat[TC][I2][0] = 0.1 pmat[TC][I4][0] = 0.1 pmat[TC][I5][0] = 0.1 pmat[TC][I6][0] = 0.1 } pmat[E2][E2][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E2][E2][1]=0//0.14 pmat[E2][E5B][0]=0.8 // strong by wiring matrix in (Weiler et al., 2008) pmat[E2][E5R][0]=0.8 // strong by wiring matrix in (Weiler et al., 2008) pmat[E2][I5L][0]=0.51 // L2/3 E -> L5 LTS I (justified by (Apicella et al., 2012) pmat[E2][E6][0]=0 // none by wiring matrix in (Weiler et al., 2008) pmat[E2][I2L][0]=0.51 pmat[E2][I2][0]=0.43 pmat[E2][I2][1]=0.14 pmat[E5B][E2][0]=0 // none by wiring matrix in (Weiler et al., 2008) pmat[E5B][E2][1]=0.25 pmat[E5B][E2][2]=0.1 pmat[E5B][E5B][0]=0.04 * 4 // set using (Kiritani et al., 2012) Fig. 6D, Table 1, value x 4 pmat[E5B][E5B][1]=0.25 pmat[E5B][E5B][2]=0.1 pmat[E5B][E5R][0]=0 // set using (Kiritani et al., 2012) Fig. 6D, Table 1 pmat[E5B][E5R][1]=0.25 pmat[E5B][E5R][2]=0.1 pmat[E5B][E6][0]=0 // none by suggestion of Ben and Gordon over phone pmat[E5B][I5L][0]=0 // ruled out by (Apicella et al., 2012) Fig. 7 pmat[E5B][I5L][1]=0.14 pmat[E5B][I5L][2]=0.07 pmat[E5B][I5][0]=0.43 // CK: was 0.43 but perhaps the cause of the blow-up? pmat[E5B][I5][1]=0.14 pmat[E5B][I5][2]=0.07 pmat[E5R][E2][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E5R][E5B][0]=0.21 * 4 // set using (Kiritani et al., 2012) Fig. 6D, Table 1, value x 4 pmat[E5R][E5B][1]=0.25 pmat[E5R][E5R][0]=0.11 * 4 // set using (Kiritani et al., 2012) Fig. 6D, Table 1, value x 4 pmat[E5R][E5R][1]=0.14 pmat[E5R][E6][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E5R][I5L][0]=0 // ruled out by (Apicella et al., 2012) Fig. 7 pmat[E5R][I5][0]=0.43 pmat[E5R][I5][1]=0.14 pmat[E6][E2][0]=0 // none by wiring matrix in (Weiler et al., 2008) pmat[E6][E5B][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E6][E5R][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E6][E6][0]=0.2 // weak by wiring matrix in (Weiler et al., 2008) pmat[E6][I6L][0]=0.51 pmat[E6][I6][0]=0.43 pmat[E6][I6][1]=0.14 pmat[I2L][E2][0]=0.35 pmat[I2L][I2L][0]=0.09 pmat[I2L][I2][0]=0.53 pmat[I2][E2][0]=0.44 pmat[I2][I2L][0]=0.34 pmat[I2][I2][0]=0.62 pmat[I5L][E5B][0]=0.35 pmat[I5L][E5R][0]=0.35 pmat[I5L][I5L][0]=0.09 pmat[I5L][I5][0]=0.53 pmat[I5][E5B][0]=0.44 pmat[I5][E5R][0]=0.44 pmat[I5][I5L][0]=0.34 pmat[I5][I5][0]=0.62 pmat[I6L][E6][0]=0.35 pmat[I6L][I6L][0]=0.09 pmat[I6L][I6][0]=0.53 pmat[I6][E6][0]=0.44 pmat[I6][I6L][0]=0.34 pmat[I6][I6][0]=0.62 } //* scalepmat(fctr) - multiply values in pmat by fctr proc scalepmat () { local fctr,from,to,cl fctr=$1 for from=0,CTYPi-1 for to=0,CTYPi-1 for cl=0,1 pmat[from][to][cl] *= fctr } //* pmat2nq - return an NQS with info in pmat obfunc pmat2nq () { local i,j,k localobj nqpmat nqpmat=new NQS("froms","tos","from","to","cold","pij") {nqpmat.strdec("froms") nqpmat.strdec("tos")} for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr if(pmat[i][j][k]) { nqpmat.append(CTYP.o(i).s,CTYP.o(j).s,i,j,k,pmat[i][j][k]) } return nqpmat } //* nq2pmat - load NQS ($o1) into pmat proc nq2pmat () { local i,j,k localobj nq,vf,vto,vc,vpij {nq=$o1 nq.tog("DB") vf=nq.getcol("from") vto=nq.getcol("to") vc=nq.getcol("cold") vpij=nq.getcol("pij")} for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr pmat[i][j][k]=0 for i=0,vf.size-1 pmat[vf.x(i)][vto.x(i)][vc.x(i)]=vpij.x(i) print "loaded " , nq , " into pmat" } //* synapse locations DEND SOMA AXON proc setsynloc () { local from,to for from=0,CTYPi-1 for to=0,CTYPi-1 { if(ice(from)) { if(IsLTS(from)) { synloc[from][to]=DEND // distal [GA2] - from LTS } else { synloc[from][to]=SOMA // proximal [GA] - from FS } } else { synloc[from][to]=DEND // E always distal. use AM2,NM2 } } } //* setdelmats -- setup delm,deld proc setdelmats () { local from,to,ii,jj for from=0,CTYPi-1 for to=0,CTYPi-1 { if(synloc[from][to]==DEND) { delm[from][to]=4 * delmscale[from][to] // stccol deld[from][to]=1 } else { delm[from][to]=2.0 * delmscale[from][to] // stccol deld[from][to]=0.2 } } // snum=0 // for ii=0,CTYPi-1 for jj=0,CTYPi-1 snum+=int(pmat[ii][jj][0]*numc[ii]*numc[jj]+1) } //* weight params //** delay all 2+/-0.02 within column for now proc setwmat () { local from,to,sy,gn,c for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 for c=0,colr wmat[from][to][sy][c]=0 // <-- stccol // Thalamic connection weights if (thalamusOn == 1) { //** skin -> thalamus wmat[SM][TC][AM2][0] = 10 wmat[E6][TC][AM2][0] = 0.75 wmat[E6][TC][NM][0] = 0.075 wmat[E6][IRE][AM2][0] = 0.75 wmat[E6][IRE][NM][0] = 0.075 wmat[TC][E2][AM2][0] = 0.5 wmat[TC][E2][NM][0] = 0.05 wmat[TC][E4][AM2][0] = 1.0 wmat[TC][E4][NM][0] = 0.1 wmat[TC][E5B][AM2][0] = 1.5 wmat[TC][E5B][NM][0] = 0.15 wmat[TC][E5R][AM2][0] = 1.5 wmat[TC][E5R][NM][0] = 0.15 wmat[TC][E6][AM2][0] = 1.0 wmat[TC][E6][NM][0] = 0.1 wmat[TC][I2][AM2][0] = 1.5 wmat[TC][I4][AM2][0] = 1.5 wmat[TC][I5][AM2][0] = 1.5 wmat[TC][I6][AM2][0] = 1.5 wmat[TC][IRE][AM2][0] = 0.75 wmat[TC][IRE][NM][0] = 0.15 wmat[IRE][TC][GA2][0] = 1.0 wmat[IRE][IRE][GA2][0] = 0.3 } //*** neocx -> neocx wmat[E2][E2][AM2][0]=0.66 wmat[E2][E2][AM2][1]=0.47 * EEGainInterC // wmat[E2][E4][AM2][0]=0.36 wmat[E2][E5B][AM2][0]=0.36 wmat[E2][E5R][AM2][0]=0.93 wmat[E2][I5L][AM2][0]=0.36 wmat[E2][E6][AM2][0]=0 wmat[E2][I2L][AM2][0]=0.23 wmat[E2][I2][AM2][0] = 0.23 wmat[E2][I2][AM2][1] = 1.5 * EIGainInterC /* if(E2I4) { // wmat[E2][I4][AM2][0]=0.18 wmat[E2][I4][AM2][1]=0.18 // stccol // wmat[E2][I4L][AM2][0]=0.09 // wmat[I2][E4][AM2][0]=0.25 } */ /* no layer 4 since M1 model wmat[E4][E2][AM2][0]=0.58*e4e2wt wmat[E4][E4][AM2][0]=0.95 wmat[E4][E5B][AM2][0]=1.01 wmat[E4][E5R][AM2][0]=0.54 wmat[E4][E6][AM2][0]=2.27 wmat[E4][I4L][AM2][0]=0.23 wmat[E4][I4][AM2][0] = 0.23 wmat[E4][I4][AM2][1] = 1.5 * EIGainInterC */ wmat[E5B][E2][AM2][0]=0 // ruled out based on Ben and Gordon conversation wmat[E5B][E2][AM2][1]=0.47 * EEGainInterC wmat[E5B][E2][AM2][2]=0.47 * EEGainInterC // wmat[E5B][E4][AM2][0]=0.17 wmat[E5B][E5B][AM2][0]=0.66 wmat[E5B][E5B][AM2][1]=0.47 * EEGainInterC wmat[E5B][E5B][AM2][2]=0.47 * EEGainInterC wmat[E5B][E5R][AM2][0]=0 // pulled from Fig. 6D, Table 1 of (Kiritani et al., 2012) wmat[E5B][E5R][AM2][1]=0.47 * EEGainInterC wmat[E5B][E5R][AM2][2]=0.47 * EEGainInterC wmat[E5B][E6][AM2][0]=0 // ruled out based on Ben and Gordon conversation wmat[E5B][I2L][AM2][1]=1.5 * EIGainInterC wmat[E5B][I2L][AM2][2]=1.5 * EIGainInterC wmat[E5B][I5L][AM2][0]=0 // ruled out by (Apicella et al., 2012) Fig. 7 wmat[E5B][I5L][AM2][1]=1.5 * EIGainInterC wmat[E5B][I5L][AM2][2]=1.5 * EIGainInterC wmat[E5B][I5][AM2][0]=0.23 //(Apicella et al., 2012) Fig. 7F (weight = 1/2 x weight for E5R->I5) wmat[E5B][I5][AM2][1]=1.5 * EIGainInterC wmat[E5B][I5][AM2][2]=1.5 * EIGainInterC wmat[E5R][E2][AM2][0]=0.66 // wmat[E5R][E4][AM2][0]=0.48 wmat[E5R][E5B][AM2][0]=0.66 wmat[E5R][E5B][AM2][1]=0.47 * EEGainInterC wmat[E5R][E5R][AM2][0]=0.66 wmat[E5R][E5R][AM2][1]=0.47 * EEGainInterC wmat[E5R][E6][AM2][0]=0.66 wmat[E5R][I5L][AM2][0]=0 // ruled out by (Apicella et al., 2012) Fig. 7 wmat[E5R][I5][AM2][0]=0.46 // (Apicella et al., 2012) Fig. 7E (weight = 2 x weight for E5B->I5) wmat[E5R][I5][AM2][1]=1.5 * EIGainInterC // <-- stccol /* if(E5IRE) { wmat[E5B][IRE][AM2][1]=0.5 wmat[E5R][IRE][AM2][1]=0.5 wmat[E5B][IRE][AM2][2]=0.25 wmat[E5R][IRE][AM2][2]=0.25 } */ // stccol --> wmat[E6][E2][AM2][0]=0 // wmat[E6][E4][AM2][0]=0 wmat[E6][E5B][AM2][0]=0.66 wmat[E6][E5R][AM2][0]=0.66 wmat[E6][E6][AM2][0]=0.66 wmat[E6][I6L][AM2][0]=0.23 wmat[E6][I6][AM2][0]=0.23 wmat[E6][I6][AM2][1]=1.5 * EIGainInterC wmat[I2L][E2][GA2][0]=0.83 /* wmat[I2L][E5B][GA2][0]=0.83 wmat[I2L][E5R][GA2][0]=0.83 wmat[I2L][E6][GA2][0]=0.83 */ wmat[I2L][I2L][GA2][0]=1.5 wmat[I2L][I2][GA2][0]=1.5 /* wmat[I2L][I5][GA2][0]=0.83 wmat[I2L][I6][GA2][0]=0.83 */ wmat[I2][E2][GA][0]=1.5 wmat[I2][I2L][GA][0]=1.5 wmat[I2][I2][GA][0]=1.5 /* no layer 4 since M1 model wmat[I4L][E4][GA2][0]=0.83 wmat[I4L][I4L][GA2][0]=1.5 wmat[I4L][I4][GA2][0]=1.5 wmat[I4][E4][GA][0]=1.5 wmat[I4][I4L][GA][0]=1.5 wmat[I4][I4][GA][0]=1.5 */ // wmat[I5L][E2][GA2][0]=0.83 wmat[I5L][E5B][GA2][0]=0.83 wmat[I5L][E5R][GA2][0]=0.83 /* wmat[I5L][E6][GA2][0]=0.83 wmat[I5L][I2][GA2][0]=0.83 */ wmat[I5L][I5L][GA2][0]=1.5 wmat[I5L][I5][GA2][0]=1.5 // wmat[I5L][I6][GA2][0]=0.83 wmat[I5][E5B][GA][0]=1.5 wmat[I5][E5R][GA][0]=1.5 wmat[I5][I5L][GA][0]=1.5 wmat[I5][I5][GA][0]=1.5 /* wmat[I6L][E2][GA2][0]=0.83 wmat[I6L][E5B][GA2][0]=0.83 wmat[I6L][E5R][GA2][0]=0.83 */ wmat[I6L][E6][GA2][0]=0.83 /* wmat[I6L][I2][GA2][0]=0.83 wmat[I6L][I5][GA2][0]=0.83 */ wmat[I6L][I6L][GA2][0]=1.5 wmat[I6L][I6][GA2][0]=1.5 wmat[I6][E6][GA][0]=1.5 wmat[I6][I6L][GA][0]=1.5 wmat[I6][I6][GA][0]=1.5 //set NMDA weights for from=0,CTYPi-1 for to=0,CTYPi-1 for c=0,colr wmat[from][to][NM2][c]=NMAMR*wmat[from][to][AM2][c] //gain control for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=AM,GA2 for c=0,colr if(wmat[from][to][sy][c] > 0) { if(ice(from)) { if(ice(to)) { gn = IIGain } else { gn = IEGain } if(IsLTS(from) && !IsLTS(to)) gn *= 0.5 } else { if(ice(to)) { gn = EIGain if(IsLTS(to)) gn *= 0.5 } else { gn = EEGain if(sy==NM || sy==NM2) gn *= EENMGain // E->E NMDA gain } } wmat[from][to][sy][c] *= gn } if(!TCNM) for i=0,colr-1 for case(&j,NM,NM2) wmat[TC][E4][j][i]=0 // stccol } // %con (con/pre) = %div (div/post) //* prune using values in prumat proc pruc () { local i,j for i=0,CTYPi-1 for j=0,CTYPi-1{ if(div[i][j][0] && numc[i] && numc[j] && prumat[i][j]){ printf("Warning: pruning random %.2f%% of %s->%s syns\n",prumat[i][j]*100,CTYP.o(i).s,CTYP.o(j).s) for ixt(i) XO.prune(prumat[i][j],j) } } } //* get sprouting value assuming 0% sprouting == 50% pruning func getspr () { local pr pr = $1 return ((0.5-pr)/.5)*100 } //* turn off pruning proc pruoff () { local i,j for i=0,CTYPi-1 for j=0,CTYPi-1 prumat[i][j]=0 for i=0,allcells-1 INTF6[i].prune(0) } //* set all entries in pruning matrix to $1 proc setpru () { local from,to,val val=$1 pruoff() // first turn off pruning for from=0,CTYPi-1 for to=0,CTYPi-1 prumat[from][to]=val } //* print prumat proc prumatpr () { local i,j for i=0,CTYPi-1 { for j=0,CTYPi-1{ printf("%.2f ",prumat[i][j]) } printf("\n") } } //* clear sprmat entries to 0 proc clrsprmat () { local i,j for i=0,CTYPi for j=0,CTYPi sprmat[i][j]=0 } //* unkill/prune all cells proc unkp () { for i=0,allcells-1 { ce.o(i).flag("dead",0) ce.o(i).prune(0) } } //* kill cells who's ids are in $o1 proc dokill () { local id for vtr(&id,$o1) ce.o(id).flag("dead",1) } //* getkillids - gets ids of cells to kill in $o1 but excludes cells that are stim'ed //$1=cell type to kill,$2=prct of cells to kill,$o3=vq stim nqs,$4=out vector of kill ids,$5=rnd seed func getkillids () { local killcnt,i,j,ct,prct localobj vq,vkid,rd ct=$1 prct=$2 vq=$o3 vkid=$o4 killcnt=int(prct*numc[ct]) vkid.resize(0) j=0 i=ix[ct] rd=new Random() rd.ACG($5) while(j=mx)continue//already @ max size while(sz+vd.x(poty)>mx) sz-=1 vrsz(sz*4,vtmp,vnewid) rd.discunif(ix[poty],ixe[poty]) vtmp.setrand(rd) vtmp.uniq(vnewid) vtmp.resize(0) for i=0,vnewid.size-1 if(!vid.contains(vnewid.x(i))) vtmp.append(vnewid.x(i)) vtmp.resize(sz) if(vtmp.size) { vnewdel.resize(vtmp.size) rd.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty]) vnewdel.setrand(rd) ce.o(id).setdvi(vtmp,vnewdel,2) } } dealloc(a) return 1 } //** gethublims(col,hubtype,hubfactor,numhubs,mode) // get a matrix of size CTYPi X CTYPi, specifying div with mat.x(hubtype,othertype) // and conv with mat.x(othertype,hubtype) // hubtype = type of hub. hubfactor = desired ratio of hub div/conv vs non-hub div/conv // numhubs = # of hubs. col = COLUMN for which to set hubs. // mode == 0 <-- hub div(conv) is set to hubfactor * original div(conv) // mode == 1 <-- hub div(conv) is set so that final hub div = hubfactor * final non_hub div (same for conv) // formula is based on: m / ((N-H*m) / (C-H)) = F , and then solving for m // m = div for the hubs, F = desired ratio of final hub div to final non-hub div // N = # of synapses (links), C = total # of postsynaptic cells (including hubs) , H = # of hubs // similarly done for conv , but replace N with appropriate values // (/u/samn/intfcol/notebook.dol_1:21933) obfunc gethublims () { local ct,mode,from,to,lim,nc,nhubs,fctr localobj col,mat {col=$o1 ct=$2 fctr=$3 nhubs=$4 mode=$5 mat=new Matrix(CTYPi,CTYPi)} for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to]) { {nc=col.numc[to] if(ct==to)nc-=1} // deduct for self-link if(mode==0) { lim = int( 0.5 + col.div[ct][to]*fctr ) } else { lim = int( 0.5 + col.div[ct][to]*col.numc[ct]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) ) } mat.x(ct,to) = MINxy(lim, nc) // at most div to all postsynaptic cells } for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct]) { {nc=col.numc[from] if(ct==from)nc-=1} // deduct for self-link if(mode==0) { lim = int( 0.5 + col.conv[from][ct]*fctr ) } else { lim = int( 0.5 + col.div[from][ct]*col.numc[from]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) ) } mat.x(from,ct) = MAXxy(MINxy(lim, nc),1) // at most conv from all presynaptic cells, but at least 1 } return mat } //** addhubs(column,cell-type,numhubs,scaling factor,skipI[,seed,allowz,hubmode,verbose]) // add hubs to the network by stealing wires from other neurons // $o1 == column // $2 == cell type of hub // $3 == number of hubs to add // $4 == scaling factor (should be > 1.0) for conv,div of hub // $5 == skip div/conv of I cells // $6 == seed - optional // $7 == allowz - whether to allow pulling all links from/to another cell // $8 == hubmode - which mode to use for gethublims (see above) // $9 == verbose - optional // function returns a Vector containing the ids of the cells selected as hubs (within column ids) obfunc addhubs () { local a,ct,fctr,nhubs,idx,jdx,lseed,hubid,szorig,cursz,preid,poid,lim,skipI,to,from,vrb,changed,allowz,hmode\ localobj col,ce,vin,vout,nq,vd,vc,vdd,vdt,vddt,vpicked,vhubid,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz,mhlim col=$o1 ct=$2 nhubs=$3 fctr=$4 skipI=$5 if(numarg()>5) lseed=$6 else lseed=1234 if(numarg()>6) allowz=$7 else allowz=1 if(numarg()>7) hmode=$8 else hmode=0 if(numarg()>8) vrb=$9 else vrb=0 {ce=col.ce hashseed_stats(lseed,lseed,lseed)} a=allocvecs(vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz) vrsz(col.allcells,vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vdsz,vcsz,vtmp) mhlim=gethublims(col,ct,fctr,nhubs,hmode) //vin,vout = input/output markers. vd,vc = div/conv. //vdd div/conv delays, vdt div/conv temp. vddt=div/conv delay temp //vpicked=which cells already picked as hubs vhubid=new Vector() {vhubid.indgen(col.ix[ct],col.ixe[ct],1) vhubid.shuffle() vhubid.resize(nhubs)} if(vrb) vlk(vhubid) for idx=0,vhubid.size-1 vpicked.x(vhubid.x(idx))=1 for idx=0,vhubid.size-1 { hubid=vhubid.x(idx) if(vrb) printf("hub%d id = %d\n",idx+1,hubid) {ce.o(hubid).getdvi(vd,vdd,vw1,vw2,vprob,vsyn) ce.o(hubid).getconv(vc)}//IDs of post/presynaptic cells {ce.o(hubid).getconv(1.2,vcsz) vdsz.resize(CTYPi) vdsz.fill(0)}//counts of post/pre types for jdx=0,vd.size-1 vdsz.x(ce.o(vd.x(jdx)).type)+=1 {vout.fill(0) vin.fill(0)} //init as 0 for jdx=0,vd.size-1 vout.x(vd.x(jdx))=1 //mark current postsynaptic cells for jdx=0,vc.size-1 vin.x(vc.x(jdx))=1 //mark current presynaptic cells for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to] && (!skipI || !ice(to))) { cursz=szorig=vdsz.x(to) // update divergence if(vrb) print "\torig div -> " , CTYP.o(to).s, " = " , szorig {lim=mhlim.x(ct,to) changed=1} while(cursz " , CTYP.o(to).s, " = " , cursz } ce.o(hubid).setdvi(vd,vdd,vsyn) // update hub dvi for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct] && (!skipI || !ice(from))) { cursz=szorig=vcsz.x(from) // update convergence {lim=mhlim.x(from,ct) changed=1} if(vrb) print "\torig conv <- ", CTYP.o(from).s, " = " , szorig while(cursz1) { // make sure not to remove all inputs of a type to a cell vdt.x( jdx ) = hubid // reassign input to hub ce.o(preid).setdvi(vdt,vddt,vsynt) // reset presynaptic cell's div vin.x( preid ) = changed = 1 // mark input cursz += 1 break } } } } } if(vrb) print "\tnew conv <- " , CTYP.o(from).s, " = " , cursz } } {dealloc(a) return vhubid} } //* mkcolnqs - make an nqs with current pmat,wmat,delm,deld info for use by a COLUMN for wiring // "dist" represents distance between columns: dist==0 for intra-COLUMN setup, dist>0 for INTER-COLUMN setup proc mkcolnqs () { local from,to,sy,idx,d,c,fctr localobj froms,tos,sys if(numarg()>0) fctr=$1 else fctr=1 // -- for adjusting pmat idx=0 // For setting column -- ignore for now // Adjust wmat if required if (fctr!=1) for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 for c=0,colr wmat[from][to][sy][c] *= fctr {nqsdel(colnq[idx]) colnq[idx]=new NQS("froms","tos","sys","from","to","sy","w","pij","delm","deld","loc","dist")} colnq[idx].strdec("froms","tos","sys") for from=0,CTYPi-1 { froms=CTYP.o(from) for to=0,CTYPi-1 { tos=CTYP.o(to) for d=0,colr if(pmat[from][to][d]>0) for sy=0,STYPi-1 if(wmat[from][to][sy][d]>0) { sys=STYP.o(sy) colnq[idx].append(froms.s,tos.s,sys.s,from,to,sy,wmat[from][to][sy][d],pmat[from][to][d],delm[from][to],deld[from][to],synloc[from][to],d) } } } } //* setcellpos(col,vector of z values by type[,z variance,pseed,columndiameter in microns]) proc setcellpos () { local i,z,x,y,zvar,c,ctyp,zmin,zmax localobj rdm,vz col=$o1 vz=$o2 if(numarg()>1) zvar=$3 if(numarg()>2) pseed=$4 if(numarg()>3) cside=$5 {rdm=new Random() rdm.ACG(pseed)} c=-1 if(col.cellsnq!=nil) c=col.cellsnq.fi("xloc") for i=0,col.allcells-1 { ctyp = col.ce.o(i).type // If L2/3 cell... if ((ctyp == E2) || (ctyp == I2) || (ctyp == I2L)) { zmin = 143.0 // L2/3 upper bound (microns) zmax = 451.8 // L2/3 lower bound (microns) // Else, if L5 corticostriatal cell (goes in 5A or 5B)... } else if (ctyp == E5R) { zmin = 451.8 // L5A upper bound (microns) zmax = 1059.0 // L5B lower bound (microns) // Else, if L5 corticospinal cell (goes in 5B)... } else if (ctyp == E5B) { zmin = 663.6 // L5B upper bound (microns) zmax = 1059.0 // L5B lower bound (microns) // Else, if L5 interneuron (goes in 5A or 5B)... } else if ((ctyp == I5) || (ctyp == I5L)) { zmin = 451.8 // L5A upper bound (microns) zmax = 1059.0 // L5B lower bound (microns) // If L6 cell... } else if ((ctyp == E6) || (ctyp == I6) || (ctyp == I6L)) { zmin = 1059.0 // L6 upper bound (microns) zmax = 1412.0 // L6 lower bound, white-matter (microns) } col.ce.o(i).xloc=x=rdm.uniform(0,cside) col.ce.o(i).yloc=y=rdm.uniform(0,cside) col.ce.o(i).zloc=z=rdm.uniform(zmin,zmax) if(c!=-1) { col.cellsnq.v[c+0].x(i)=x col.cellsnq.v[c+1].x(i)=y col.cellsnq.v[c+2].x(i)=z } } } //* reweightL2toL5() - reweight the E2->layer 5 connections proc reweightL2toL5 () { local a,L2toL5_EE_wmat_scale,L2toL5_EI_wmat_scale, ii,jj,prid,poid,prty,poty,ic1,ic2,wtchanged \ localobj col,ce,vidx,vdel,vwt1,vwt2,ign1,ign2,opr,opo,st,rdm // Set the scaling parameters to scale the data from Figure 3F of the (Apicella et al., 2012). L2toL5_EE_wmat_scale = 0.1 / EEGain // 0.023 L2toL5_EI_wmat_scale = 0.1 / EIGain // 0.0048 // Allocate vectors. a = allocvecs(vidx,vdel,vwt1,vwt2,ign1,ign2) // Read the function arguments. col = $o1 ce = col.ce // If we have a connections NQS table, set its verbosity off. if (col.mknetnqss) col.connsnq.verbose = 0 // Loop over all cells in the column... for ii=0,ce.count-1 { // Set this as the pre-synaptic cell. opr = ce.o(ii) // Get pre-synaptic values. prid = opr.id prty = opr.type ic1 = ice(opr.type) // Initialize the weight to not changed. wtchanged = 0 // If the pre-synaptic type is E2... if (prty == E2) { // Get the divergence information for the pre-synaptic cell. opr.getdvi(vidx,vdel,ign1,vwt1,vwt2,ign2) // Loop over all of the post-synaptic cells... for jj=0,vidx.size-1 { // Get post-synaptic values. opo = ce.o(vidx.x(jj)) poid = opo.id poty = opo.type ic2 = ice(opo.type) // Deal with the E2->E5R (corticostriatal) case. if (poty == E5R) { // If the E5R cell is in layer 5A... if (opo.zloc < 663.6) { if ((opr.zloc >= 143.0) && (opr.zloc < 250.0)) { vwt1.x(jj) = 25.6 * L2toL5_EE_wmat_scale * EEGain } else if ((opr.zloc >= 250.0) && (opr.zloc < 350.0)) { vwt1.x(jj) = 14.2 * L2toL5_EE_wmat_scale * EEGain } else if ((opr.zloc >= 350.0) && (opr.zloc < 451.8)) { vwt1.x(jj) = 6.8 * L2toL5_EE_wmat_scale * EEGain } // Else (if layer 5B), the weight is zero. } else { vwt1.x(jj) = 0.0 } // Set the secondary weight (NMDA) to 0.1 * AMPA weight. vwt2.x(jj) = vwt1.x(jj) * 0.1 // Set the weight to changed. wtchanged = 1 } // Deal with the E2->E5B (corticospinal) case. if (poty == E5B) { if ((opr.zloc >= 143.0) && (opr.zloc < 250.0)) { vwt1.x(jj) = 32.6 * L2toL5_EE_wmat_scale * EEGain } else if ((opr.zloc >= 250.0) && (opr.zloc < 350.0)) { vwt1.x(jj) = 33.7 * L2toL5_EE_wmat_scale * EEGain } else if ((opr.zloc >= 350.0) && (opr.zloc < 451.8)) { vwt1.x(jj) = 21.2 * L2toL5_EE_wmat_scale * EEGain } // Set the secondary weight (NMDA) to 0.1 * AMPA weight. vwt2.x(jj) = vwt1.x(jj) * 0.1 // Set the weight to changed. wtchanged = 1 } // Deal with the E2->I5L (layer 5A and 5B LTS) cases. if (poty == I5L) { if ((opr.zloc >= 143.0) && (opr.zloc < 250.0)) { // If the I5L cell is in layer 5A... if (opo.zloc < 663.6) { vwt1.x(jj) = 40.2 * L2toL5_EI_wmat_scale * EIGain // Else, if layer 5B... } else { vwt1.x(jj) = 40.2 * L2toL5_EI_wmat_scale * EIGain } } else if ((opr.zloc >= 250.0) && (opr.zloc < 350.0)) { // If the I5L cell is in layer 5A... if (opo.zloc < 663.6) { vwt1.x(jj) = 36.3 * L2toL5_EI_wmat_scale * EIGain // Else, if layer 5B... } else { vwt1.x(jj) = 14.2 * L2toL5_EI_wmat_scale * EIGain } } else if ((opr.zloc >= 350.0) && (opr.zloc < 451.8)) { // If the I5L cell is in layer 5A... if (opo.zloc < 663.6) { vwt1.x(jj) = 18.7 * L2toL5_EI_wmat_scale * EIGain // Else, if layer 5B... } else { vwt1.x(jj) = 5.3 * L2toL5_EI_wmat_scale * EIGain } } // Set the secondary weight (NMDA) to 0.1 * AMPA weight. vwt2.x(jj) = vwt1.x(jj) * 0.1 // Set the weight to changed. wtchanged = 1 } // If the weight has changed and we have a connectivity NQS... if ((wtchanged) && (col.mknetnqss)) { // Change the weights to the new values. {col.connsnq.select("id1",prid,"id2",poid)} {col.connsnq.fill("wt1",vwt1.x(jj))} {col.connsnq.fill("wt2",vwt2.x(jj))} {col.connsnq.delect()} } } // for loop over all post-synaptic cells // Reset the divergent weights. opr.setsywv(vwt1,vwt2) } // if pre-synaptic type E2 } // for loop over all cells // If we have a connections NQS table, set its verbosity back. if (col.mknetnqss) col.connsnq.verbose = 1 // Deallocate vectors. dealloc(a) } //** selectconns () - select conns from connsnq based on pre- and post-synaptic type filter proc selectconns () { local a,ii,prty,poty,prtarg,potarg localobj ridx,v1,thecol thecol = $o1 // Allocate temporary vectors. a = allocvecs(ridx,v1) prtarg = $2 potarg = $3 // Start with an empty index list. ridx.resize(0) // Loop over all rows of connsnq for ii=0,thecol.connsnq.size-1 { v1 = thecol.connsnq.getrow(ii) prty = thecol.ce.o(v1.x(0)).type poty = thecol.ce.o(v1.x(1)).type // Include only the rows that match the valid cases. if ((prty == prtarg) && (poty == potarg)) { ridx.append(ii) } } // Select the rows with for the ridx rows. thecol.connsnq.select("IND_",EQW,ridx) // Deallocate the temporary vectors. dealloc(a) } // <-- stccol //** swirecut (col,EEsq,EIsq,IEsq,IIsq[,seed,slambda]) - spatial wiring: wires the column using pmat and cell positions // (wiring probability effected by distance btwn cells) // seed is random # seed // lambda specifies length-constant for spatially-dependent fall-off in wiring probability // at one lambda away, probability of connect is value in pmat // CK: WARNING, this function has been kludgily rewritten to have no distance of constant connectivity! proc swirecut() { local x,y,z,ii,jj,a,del,prid,poid,prty,poty,dv,lseed,h,prob,slambda,dsq,dist,slambdasq,\ EEsq,EIsq,IEsq,IIsq,ic1,ic2,pdx\ localobj col,ce,vidx,vdel,vdist,vwt1,vwt2,vtmp,opr,opo,st,rdm,vprob // Allocate vectors. a=allocvecs(vidx,vdel,vtmp,vdist,vwt1,vwt2,vprob) z=0 // Read the function arguments. col=$o1 ce=col.ce EEsq=$2 EIsq=$3 IEsq=$4 IIsq=$5 if (argtype(6)==0) lseed=$6 else lseed=1234 if(numarg()>6) slambda=$7 else slambda=10 if(slambda<=0){ printf("swirecut WARN: invalid slambda=%g, setting slambda to %g\n",colside/3) slambda=colside/3 } slambdasq = slambda^2 // using squared distance // Set up connectivity vectors. vrsz(1e4,vidx,vdel,vdist,vtmp) // Set up random number stuff. hashseed_stats(lseed,lseed,lseed) rdm=new Random() rdm.ACG(lseed) // initdivrnd(lseed)//initialize random # generator rdm.uniform(0,1) vprob.resize(ce.count^2) vprob.setrand(rdm) pdx=0 // Create the connectivity NQS table. if(col.mknetnqss) {nqsdel(col.connsnq) col.connsnq=new NQS("id1","id2","del","dist","wt1","wt2")} // Loop over all cells in the column as pre-synaptic cells... for y=0,ce.count-1 { opr=ce.o(y) // Start with empty connection vectors. vrsz(0,vidx,vdel,vdist,vwt1,vwt2) // Get pre-synaptic values. prid=opr.id prty=opr.type ic1=ice(opr.type) // For all post-synaptic types where there are cells there that need connecting to // (set h to pmat value for that pr->po)... for poty=0,CTYPi-1 if (col.numc[poty]!=0 && (h=col.pmat[prty][poty])>0) { // For all of the post-synaptic cells (assuming not same as pre-synaptic cell)... for poid=col.ix[poty],col.ixe[poty] if(prid!=poid) { // Get post-synaptic cell values. opo = ce.o(poid) ic2=ice(ce.o(poid).type) // Get the x,y, and z distances. dx = opr.xloc - opo.xloc dy = opr.yloc - opo.yloc dz = opr.zloc - opo.zloc // Get the square of the x,y distance. dsq = dx^2 + dy^2 // Connectivity fall-off only depends in intra-layer distance // Get the Euclidean x,y,z distance. ds = sqrt(dx^2 + dy^2 + dz^2) // Axonal delay depends on all quantities // Get probability of connection (pmat value at x,y distance 0, scaled * 0.368 when slambda = dist) prob = h * exp(-sqrt(dsq)/slambda) // probability of connect // If the random connection is to be made... if( prob >= vprob.x(pdx) ) { // rdm.uniform(0,1) // Set the axonal delay using the x,y,z distance and random values. del = delmscalemod*(rdm.uniform(col.delm[prty][poty]-col.deld[prty][poty],col.delm[prty][poty]+col.deld[prty][poty])+ds/axonalvelocity) // Include both synaptic and axonal delays (ds/axonalvelocity is axonal) // Add the post-synaptic cell ID and the delay. {vidx.append(poid) vdel.append(del)} // Add the distance value (dendrite vs. soma). if(synloc[prty][poty]==DEND) vdist.append(1) else vdist.append(0) // Add primary and secondary weights, if appropriate to do so. if(col.mknetnqss || wsetting_INTF6==1) { if(col.syty1[prty][poty]>=0) vwt1.append(col.wmat[prty][poty][col.syty1[prty][poty]]) else vwt1.append(0) if(col.syty2[prty][poty]>=0) vwt2.append(col.wmat[prty][poty][col.syty2[prty][poty]]) else vwt2.append(0) } } pdx += 1 } // for poid } // for poty // If there is more than one efferent connection... if(vidx.size>0) { // If we are working with individual synapses (vwt1,vwt2), use them. Otherwise, set up normally. if(wsetting_INTF6==1) opr.setdvi(vidx,vdel,vdist,0,vwt1,vwt2) else opr.setdvi(vidx,vdel,vdist) // If we are making NQSs, add the new connections to connsnq. if(col.mknetnqss) { for ii=0,vidx.size-1 col.connsnq.append(prid,vidx.x(ii),vdel.x(ii),vdist.x(ii),vwt1.x(ii),vwt2.x(ii)) } } } // for all (pre-synaptic) cells // Deallocate vectors. dealloc(a) if(verbose) printf("\n") } //* checkerpos - arrange cells in checkerboard pattern proc checkerpos () { local i,j,x,y,xn,yn,csz,ssz,incsz,mnx,mxx,mny,mxy,a localobj col,ce,rdm,xo,vox,vex,voy,vey col=$o1 csz=col.cdiam ssz=$2 incsz=$3 rdm=new Random() rdm.ACG($4) ce=col.ce a=allocvecs(vox,vex,voy,vey) mxx=csz if(mxx%2==1) mxx-=1 vex.indgen(0,mxx,2) vey.indgen(0,mxx,2) mxx=csz if(mxx%2==0) mxx-=1 vox.indgen(1,mxx,2) voy.indgen(1,mxx,2) for ltr(xo,ce,&i) { if(rdm.discunif(0,1)==0) { x = vex.x(rdm.discunif(0,vex.size-1)) y = vey.x(rdm.discunif(0,vey.size-1)) } else { x = vox.x(rdm.discunif(0,vox.size-1)) y = voy.x(rdm.discunif(0,voy.size-1)) } mnx=MAXxy(x-1,0) mxx=MINxy(x,csz) if(mnx==mxx && mnx==0) { mnx+=1 mxx+=2 } mny=MAXxy(y-1,0) mxy=MINxy(y,csz) if(mny==mxy && mny==0) { mny+=1 mxy+=2 } xn = rdm.uniform(mnx,mxx) yn = rdm.uniform(mny,mxy) xo.xloc=xn xo.yloc=yn if(col.cellsnq!=nil) { col.cellsnq.v[5].x(i) = xo.xloc col.cellsnq.v[6].x(i) = xo.yloc } } } // stccol --> //* mkcols - make the COLUMNs proc mkcols () { local id,x,y,seed localobj nq id=0 for y=0,colH-1 for x=0,colW-1 { if(dbgcols)seed=dvseed else seed=(id+1)*dvseed lcol.append(gcol[y][x]=new COLUMN(id,vcpercol,colnq,seed,x,y,setdviPT,mknetnqss,1)) col[id]=gcol[y][x] col[id].verbose=verbose_INTF6 // <-- stccol if(strlen(wnqstr)>0) { // wire from NQS nq=new NQS(wnqstr) col[id].wirenq(nq) nqsdel(nq) } else if(swire>0) { // spatial-wiring // col[id].setcellpos(vlayerz,layerzvar,pseed*(id+1),colside) setcellpos(col[id],vlayerz,layerzvar,pseed*(id+1),colside) // use Gordon cell version if(checkers) checkerpos(col[id],1,1,pseed*(id+1)) if(swire==1) { col[id].swire(col[id].wseed,maxsfall) } else if(swire==2) { swirecut(col[id],EEsq,EIsq,IEsq,IIsq,col[id].wseed,slambda) // Don't read from disk, calculate } } else { setcellpos(col[id],vlayerz,layerzvar,pseed*(id+1),colside) // use Gordon cell version col[id].wire(col[id].wseed) // random wiring (no spatial dependence) reweightL2toL5(col[id]) } // stccol --> id+=1 } } //* wirecols - setup inter-COLUMN connectivity with NetCon proc wirecols () { local x1,y1,x2,y2,dx,dy,maxd,d localobj fromc,toc if(numarg()>0) d=$1 else d=colr if(torus) { // wraparound //alternate coordinates: ( -colW+x , -colH+y ) //alternate system: -5 -4 -3 -2 -1 //original system: 0 1 2 3 4 //layed out as a line: -5 -4 -3 -2 -1 0 1 2 3 4 //only need to compare in normal system, and 1 alternate coordinate vs original (and vice versa) for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 { if(y1==y2 && x1==x2) continue // skip self-self dx=MINxy(abs(x1-x2), MINxy(abs((-colW+x1)-x2), abs(x1-(-colW+x2))) ) dy=MINxy(abs(y1-y2), MINxy(abs((-colH+y1)-y2), abs(y1-(-colH+y2))) ) if((maxd=MAXxy(dx,dy)) > d) continue // skip too far gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring } } else { // no wrap-around for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 { if(y1==y2 && x1==x2) continue // skip self-self if((maxd=MAXxy(abs(x1-x2),abs(y1-y2))) > d) continue // skip too far gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring } } } //* intercoloff - turn off all weights between COLUMNs proc intercoloff () { local i localobj xo for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) { for i=0,6 xo.weight(i)=0 } } // <-- stccol //* intercolmul(from,to,sy,w) proc intercolsyw () { local from,to,sy,w localobj xo from=$1 to=$2 sy=$3 w=$4 for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) { if(xo.pre.type==from && xo.syn.type==to) xo.weight(sy)=w } } // stccol --> //* function calls to setup network //** z location of each layer in microns mkvlayerz() //** # of cells per column setcpercol() //new numbers (10aug30) //** setup pmat if(name_declared("nqpmat")==2) { // read pmat from NQS if available, else set to default if(nqpmat!=nil) nq2pmat(nqpmat) else setpmat() } else setpmat() if(pmatscale!=1) scalepmat(pmatscale) //** setup synapse locations,delays,wmat setsynloc() setdelmats() setwmat() // new KMJ version scrsz=50*1e3 double scr[scrsz] //** make cells, columns, wire columns print "Making cells..." mkcolnqs(wmatscale) // Argument is the scale factor for the weight matrix print "Making columns..." mkcols() if (loadsaveconnectivity==2) { // Save connectivity matrix print "Saving connectivity NQS table..." col.connsnq.sv("connectivity.nqs") // Save connectivity NQS to disk print "...done...." } print "Wiring columns..." wirecols(1) print "...done..." // <-- stccol //** leftover code from tvis - may use at some point //*** delm setup -- mean delays proc ae () { //**** horizontal intralaminar mean delays delm[E2][E2] = 0.4 delm[E2][I2] = 0.4 delm[E5R][E5R] = 0.4 delm[E5R][I5] = 0.4 delm[E6][E6] = 0.4 delm[E6][I6] = 0.4 //**** vertical interlaminar mean delays delm[E2][E5R] = 1.4 delm[E2][I5] = 1.4 delm[E2][E6] = 1.8 delm[E2][I6] = 1.8 delm[E5R][E2] = 1.4 delm[E5R][I2] = 1.4 delm[E5R][E6] = 1.25 delm[E5R][I6] = 1.25 delm[E6][E5R] = 1.85 delm[E6][I5] = 1.85 //**** intracortical inhibitory mean delays delm[I2][E2] = 0.4 delm[I2][I2] = 0.4 delm[I5][E5R] = 0.4 delm[I5][I5] = 0.4 delm[I6][E6] = 0.4 delm[I6][I6] = 0.4 // } //*** dels setup -- stdev of delays proc ae () { //**** horizontal intralaminar stdev of delay dels[E2][E2] = 0.1 dels[E2][I2] = 0.1 dels[E5R][E5R] = 0.1 dels[E5R][E5R] = 0.1 dels[E5R][I5] = 0.1 dels[E6][E6] = 0.1 dels[E6][I6] = 0.1 //**** vertical interlaminar stdev of delay dels[E2][E5R] = 0.25 dels[E2][I5] = 0.25 dels[E2][E6] = 0.25 dels[E2][I6] = 0.25 dels[E5R][E2] = 0.25 dels[E5R][I2] = 0.25 dels[E5R][E6] = 0.25 dels[E5R][I6] = 0.25 dels[E6][E5R] = 0.25 dels[E6][I5] = 0.25 //**** intracortical inhibitory stdev of delay dels[I2][E2] = 0.1 dels[I2][I2] = 0.1 dels[I5][E5R] = 0.1 dels[I5][I5] = 0.1 dels[I6][E6] = 0.1 dels[I6][I6] = 0.1 // from=to=0 //set delay variance for ctt(&from) for ctt(&to) if(dels[from][to]) delv[from][to]=dels[from][to]^2 } // stccol -->