for i = 0, nSyn-1 { SELECTED = 0 while (!SELECTED) { //select section (sec) using apical_non_trunk_list //repick a random number sec=int(ransec.repick()) //select section dend[sec].sec { //select location (loc) ranseg.uniform(1, nseg+1) //generate distribution for selecting segments tmpnseg = int(ranseg.repick()) //repick a random number loc = (2*tmpnseg - 1)/(2*nseg) //check if the distance is correct, otherwise start from the beginning xdist = find_vector_distance_precise(secname(),loc) if ((xdist > min_distance) && (xdist < max_distance)) {SELECTED=1} } //exit from section } //close while loop //locate synapses dend[sec].sec { syn[i] = new tmgsyn(loc) //insert NetStim nstim[i] = new NetStim(0.5) netcon[i] = new NetCon(nstim[i],syn[i]) flagW = 0 while (!flagW) { wei = 5+ranwei.repick() //x0=5 for fitting data by Ito & Schuman if (wei > 0) { netcon[i].weight = 100*wei/(70*1000) //divide by 70 mV //divide by 1000 to change from nS to uS //multiply by a factor to simulate multiple sinapses flagW = 1 } } } //close locate synapses } //close main loop