TITLE Delayed rectifire COMMENT from "An Active Membrane Model of the Cerebellar Purkinje Cell 1. Simulation of Current Clamp in Slice" ENDCOMMENT UNITS { (mA) = (milliamp) (mV) = (millivolt) } NEURON { SUFFIX Kdr USEION k WRITE ik RANGE gkbar, gk, minf, hinf, mexp, hexp, ik, alpha, beta } INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} PARAMETER { v (mV) celsius = 37 (degC) dt (ms) gkbar = .6 (mho/cm2) ek = -85 (mV) } STATE { m h } ASSIGNED { ik (mA/cm2) gk minf hinf mexp hexp } BREAKPOINT { SOLVE states gk = gkbar *m*m*h ik = gk* (v-ek) } UNITSOFF INITIAL { rates(v) m = minf h = hinf } PROCEDURE states() { :Computes state variables m,h rates(v) : at the current v and dt. m = m + mexp*(minf-m) h = h + hexp*(hinf-h) } PROCEDURE rates(v) { :Computes rate and other constants at current v. :Call once from HOC to initialize inf at resting v. LOCAL q10, tinc, tauh, alpha, beta, gamma, zeta, taum : TABLE minf, mexp, hinf, hexp DEPEND dt, celsius FROM -100 TO 100 WITH 2:00 q10 = 3^((celsius - 37)/10) tinc = -dt * q10 :"m" potassium activation system alpha = -0.0047*(v-8)/(exp((v-8)/(-12))-0.9999) : if(v == 8) {v = 8.0001} beta = exp((v+127)/(-30)) minf = alpha/(alpha+beta) gamma = -0.0047*(v+12)/(exp((v+12)/(-12))-0.9999) zeta = exp((v+147)/(-30)) taum = 1/(gamma + zeta) mexp = 1 - exp(tinc/taum) :"h" potassium activation system hinf = 1.0 / (1+exp((v+25)/4)) if(v<-25) { tauh = 1200 }else{ tauh = 10 } hexp = 1 - exp(tinc/tauh) } UNITSON