// $Id: arm.hoc,v 1.252 2012/07/21 21:55:29 samn Exp $ DOPE_INTF6 = 1 EDOPE_INTF6 = 1 IDOPE_INTF6 = 0 ESTDP_INTF6 = ISTDP_INTF6 = 0 declare("verbosearm",0) {CTYP.o(DP).s="P" CTYP.o(IML).s="ILM" CTYP.o(ISL).s="ILS"} // labels for cells //* templates - need to write begintemplate p2d double x[1],y[1] public x,y proc init () { if(numarg()==2) {x=$1 y=$2} } endtemplate p2d //* variables/declares declare("aid","o[1]") // finitializehandler for arm declare("nqaupd","o[1]") // NQS for arm updates (not all involving position changes) declare("nqE","o[1]") // has E assignment to muscle groups declare("nqDP","o[1]") // has DP assignment to muscle groups declare("MTYP","o[1]") // has muscle names declare("armSeg",2) // number of segments declare("armLen","d[2]") // length of each arm segment -- fixed throughout sim declare("MLen","d[4]") // length of each muscle -- varies throughout sim declare("MFctr",1) declare("minMLen","d[4]","maxMLen","d[4]") // min/max muscle lengths declare("rotfctr","d[2]") // multiplies diff in muscle group activation into rotation angle declare("rotNorm",0) // normalize rotation by distance from origin? declare("minang","d[2]","maxang","d[2]") // min/max angles for each joint declare("aDT",5) // how often to update the whole arm apparatus declare("amoveDT",50) // how often to update the arm's position declare("mcmdspkwd",50) // motor command spike window; how wide to make the counting window (in ms) declare("EMlag",50) // lag between EM commands (at neuromuscular junction) and arm update declare("lastmovetime",0) // when was the last arm move (in ms)? declare("spdDT",50) // how often to update the muscle spindles (DP cells) declare("DPlag",25) // lag between arm movement and DP update declare("lastspdupdate",0) // when was the last spindle update (in ms)? declare("rlDT",50) // how often to check RL status declare("lastrlupdate",0) // when was the last RL update (in ms)? maxplastt_INTF6=rlDT + 50 declare("minRLerrchangeLTP",0.01) // minimum error change visible to RL algorithm for LTP (units in Cartesian coordinates) declare("minRLerrchangeLTD",0.01) // minimum error change visible to RL algorithm for LTD (units in Cartesian coordinates) declare("lrec","o[2]") // recording from ES, EM declare("vEM",new Vector()) declare("armAng","d[2]","armPos",new p2d(),"ePos",new p2d(),"tPos",new p2d()) declare("tAng","d[2]") // target angle declare("sAng","d[2]") // starting angle declare("APHASE",0,"AMOVE",0,"AHOLD",1,"ARESET",2,"HoldDur",400,"MoveDur",300,"ResetDur",100) declare("DoLearn",0,"DoReset",2,"DoAnim",1,"DoRDM",2) declare("RLMode",3) // reinforcement learning mode (0=none,1=reward,2=punishment,3=reward+punishment) declare("ATYP",new List()) declare("SUBPHASE",0) declare("ardm",new Random(),"aseed",913015) // for random set of arm pos during training declare("pnq","o[2]") declare("DiffRDEM",0) // whether to take difference from last activity when reading out EM activity declare("nqsy","o[2]") // for recording synaptic weights over time -- only saves L5 cell synapses declare("syDT",0) // dt for recording synaptic weights into nqsy -- only used when syDT>0 declare("lastsysave",0) // when was the nqsy synaptic weight recording (in ms)? declare("shlock",0) // whether to lock shoulder declare("ellock",0) // whether to lock elbow declare("targid",11) // target ID for target to set up sprint(tstr,"o[%d][%d]",CTYPi+1,CTYPi+1) declare("lssyavg",tstr) // list of average synaptic weights vs time for a particular population declare("XYERR",0) // whether to use diff btwn targ and arm angle for error -- defaults to 0==cartesian error declare("ANGERR",1) // whether to use diff btwn targ and arm angle for error -- defaults to 0==cartesian error declare("errTY",XYERR) // declare("COMBERR",0) // whether to check angular error in combination with cartesian to ensure good path to targ declare("HoldStill",0) // whether to hold the arm still - useful for debugging EM output at a given position // declare("AdaptLearn",0) // whether to modulate learning level by distance from target declare("lem","o[1]") // List of EM AM2 'noise' NetStims to allow modulation declare("AdaptNoise",0) // whether to adapt noise declare("LTDCount",0) // number of recent LTD periods - used for noise adaptation declare("StuckCount",2) // number of periods where arm doesn't improve and should adapt noise declare("EMNoiseRate",sgrhzEE) // rate of noise inputs to EM cells declare("EMNoiseRateInc",50) // rate by which to increase noise rate when arm gets stuck declare("EMNoiseRateDec",25) // rate by which to decrease noise rate when arm gets stuck declare("ResetEMNoiseRate",1) // reset EMNoiseRate to sgrhzEE @ start of run ? declare("EMNoiseRateMax",3e3) // rate of noise inputs to EM cells declare("MLenIndepArmLen",1) // whether MLen values are independent of arm segment length declare("maxang0",135,"maxang1",135) // maxangs //* updateMLen - update muscle lengths based on current angles proc updateMLen () { if(MLenIndepArmLen) { // is muscle length independent of arm segment length? if(NMUSCLES==2) { // Shoulder extensor muscle length is upper-arm length under maximum flex, zero under minimum flex. MLen[0] = (armAng[0] - minang[0]) / (maxang[0] - minang[0]) // Elbow extensor muscle length is forearm length under maximum flex, zero under minimum flex. MLen[1] = (armAng[1] - minang[1]) / (maxang[1] - minang[1]) MLen[2] = MLen[3] = 0 // not using these } else if(NMUSCLES==4) { // redundant muscles when using 4 muscles for 2 joints // Shoulder extensor muscle length is upper-arm length under maximum flex, zero under minimum flex. MLen[0] = (armAng[0] - minang[0]) / (maxang[0] - minang[0]) // Shoulder flexor muscle length is upper-arm length under minimum flex, zero under maximum flex. MLen[1] = 1 - MLen[0] // Elbow extensor muscle length is forearm length under maximum flex, zero under minimum flex. MLen[2] = (armAng[1] - minang[1]) / (maxang[1] - minang[1]) // Elbow flexor muscle length is forearm length under minimum flex, zero under maximum flex. MLen[3] = 1 - MLen[2] } } else { // muscle lengths (MLen) not independent of arm segment length (armLen) if(NMUSCLES==2) { // Shoulder extensor muscle length is upper-arm length under maximum flex, zero under minimum flex. MLen[0] = armLen[0] * (armAng[0] - minang[0]) / (maxang[0] - minang[0]) // Elbow extensor muscle length is forearm length under maximum flex, zero under minimum flex. MLen[1] = armLen[1] * (armAng[1] - minang[1]) / (maxang[1] - minang[1]) MLen[2] = MLen[3] = 0 // not using these } else if(NMUSCLES==4) { // redundant muscles when using 4 muscles for 2 joints // Shoulder extensor muscle length is upper-arm length under maximum flex, zero under minimum flex. MLen[0] = armLen[0] * (armAng[0] - minang[0]) / (maxang[0] - minang[0]) // Shoulder flexor muscle length is upper-arm length under minimum flex, zero under maximum flex. MLen[1] = armLen[0] - MLen[0] // Elbow extensor muscle length is forearm length under maximum flex, zero under minimum flex. MLen[2] = armLen[1] * (armAng[1] - minang[1]) / (maxang[1] - minang[1]) // Elbow flexor muscle length is forearm length under minimum flex, zero under maximum flex. MLen[3] = armLen[1] - MLen[2] } } } //* resetarm - put arm in starting position proc resetarm () { local dr0,dr1 armAng[0] = sAng[0] armAng[1] = sAng[1] dr0 = deg2rad(armAng[0]) // convert to radians dr1 = deg2rad(armAng[1]) ePos.x = armLen[0] * cos(dr0) // end of elbow ePos.y = armLen[0] * sin(dr0) armPos.x = ePos.x + armLen[1] * cos(dr0 + dr1) // wrist=arm position armPos.y = ePos.y + armLen[1] * sin(dr0 + dr1) vEM.fill(0) updateMLen() } //* initarmang - init arm angles - checks lock variables proc initarmang () { if(shlock) { // shoulder-lock configuration minang[0] = -15.1 maxang[0] = -14.9 minang[1] = 0 maxang[1] = 135 sAng[0] = -15 sAng[1] = 90 } else if(ellock) { // elbow-lock straight-arm configuration minang[0] = -45 maxang[0] = 135 minang[1] = -0.1 maxang[1] = 0.1 sAng[0] = 45 sAng[1] = 0 } else { minang[0] = -45 maxang[0] = maxang0 minang[1] = 0 maxang[1] = maxang1 sAng[0] = minang[0] sAng[1] = minang[1] } } //* assignDP - set DP cell muscle length range responsiveness. store info in nqDP proc assignDP () { local ii,jj,shmlenrangewid,elmlenrangewid,shminmlen,shmaxmlen,elminmlen,elmaxmlen,shinc,elinc localobj xo {nqsdel(nqDP) nqDP = new NQS("col","id","ty","mid","mids","MLmin","MLmax") nqDP.strdec("mids")} if(MLenIndepArmLen) { shinc = 1.0 / (cedp.count() / NMUSCLES) //increments for centers of muscle-length tuning elinc = 1.0 / (cedp.count() / NMUSCLES) shmlenrangewid = 1.0 / (cedp.count() / NMUSCLES) //range of muscle lengths over which DP cells responsive elmlenrangewid = 1.0 / (cedp.count() / NMUSCLES) } else { shinc = armLen[0] / (cedp.count() / NMUSCLES) //increments for centers of muscle-length tuning elinc = armLen[1] / (cedp.count() / NMUSCLES) shmlenrangewid = armLen[0] / (cedp.count() / NMUSCLES) //range of muscle lengths over which DP cells responsive elmlenrangewid = armLen[1] / (cedp.count() / NMUSCLES) } shminmlen = 0 shmaxmlen = shmlenrangewid elminmlen = 0 elmaxmlen = elmlenrangewid for ii=0,cedp.count() / NMUSCLES - 1 { if(NMUSCLES==2) { {xo=cedp.o(ii*NMUSCLES+0) xo.setmlenrange(shminmlen,shmaxmlen)} nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,shminmlen,shmaxmlen) {xo=cedp.o(ii*NMUSCLES+1) xo.setmlenrange(elminmlen,elmaxmlen)} nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,elminmlen,elmaxmlen) } else if(NMUSCLES==4) { for jj=0,1 { {xo=cedp.o(ii*NMUSCLES+jj) xo.setmlenrange(shminmlen,shmaxmlen)} nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,shminmlen,shmaxmlen) } for jj=2,3 { {xo=cedp.o(ii*NMUSCLES+jj) xo.setmlenrange(elminmlen,elmaxmlen)} nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,elminmlen,elmaxmlen) } } else print "assignDP ERRA: invalid NMUSCLES = ", NMUSCLES shminmlen += shinc shmaxmlen += shinc elminmlen += elinc elmaxmlen += elinc } } //* initarm - init arm location/params proc initarm () { local ii armLen[0] = 1 // shoulder to forearm armLen[1] = 2 // forearm to wrist for ii=0,1 rotfctr[ii] = 1 // max of 1 degrees initarmang() // initialize arm angles, checks lock variables assignDP() // assign DP responsiveness, store info in nqDP resetarm() } //* mkmyTYP - set up names of muscle groups and phases proc mkmyTYP () { MTYP=new List() MTYP.append(new String("shext")) MTYP.append(new String("shflex")) MTYP.append(new String("elext")) MTYP.append(new String("elflex")) ATYP=new List() ATYP.append(new String("Move")) ATYP.append(new String("Hold")) ATYP.append(new String("Reset")) } //* recE - set up recording from E cells proc recE () { // lrec[0] = mkrecl(col[0],ES) lrec[1] = mkrecl(col[0],EM) } //* GetEMType(cell id) - returns type of motor unit - only used for EM cells // lookup in MTYP List to see string representation func GetEMType () { if($1 < col.ix[EM] || $1 > col.ixe[EM]) return -1 // not an EM cell? return -1 return $1 % 4 // otherwise, return type } //* assignEM() proc assignEM () { local i,ct,mid,a localobj vty {nqsdel(nqE) nqE = new NQS("col","id","ty","mid","mids") nqE.strdec("mids")} a=allocvecs(vty) vty.append(EM) nqE.clear(col[0].numc[EM]) for vtr(&ct,vty) for i=col[0].ix[ct],col[0].ixe[ct] { mid = i%4 nqE.append(1,i,ct,mid,MTYP.o(mid).s) } dealloc(a) } //* readoutEM - read activity from EM - store results in vEM proc readoutEM () { local i,idx,ldx,sz vEM.resize(MTYP.count) vEM.fill(0) ldx=1 for i=0,nqE.v.size-1 { idx=nqE.v[1].x(i)-col[0].ix[EM] vEM.x(nqE.v[3].x(i)) += lrec[ldx].o(1).o(idx).size lrec[ldx].o(1).o(idx).resize(0) // reset to 0 } if(DiffRDEM) { sz=nqa.v.size if(sz) { vEM.x(0) -= nqa.v[5].x(sz-1) vEM.x(1) -= nqa.v[6].x(sz-1) vEM.x(2) -= nqa.v[7].x(sz-1) vEM.x(3) -= nqa.v[8].x(sz-1) for i=0,3 if(vEM.x(i) < 0) vEM.x(i) = 0 } } } //* getarmX(shoulder angle in radians, elbow angle in radians) - // gets the end effector x coordinate func getarmX () { local ex ex = armLen[0] * cos($1) // end of elbow return ex + armLen[1] * cos($1+$2) // wrist=arm position } //* getarmY(shoulder angle in radians, elbow angle in radians) - // gets the end effector y coordinate func getarmY () { local ey ey = armLen[0] * sin($1) return ey + armLen[1] * sin($1+$2) } //* clampval(pointer to value, min value, max value) - clamps value to min,max proc clampval () { local val $&1 = MAXxy($&1,$2) $&1 = MINxy($&1,$3) } //* rotArm(angle0,angle1) - rotate arm by angle0,angle1 proc rotArm () { local dsh,delb,dr0,dr1,i dsh=$1 delb=$2 armAng[0] += dsh // inc angles armAng[1] += delb for i=0,1 clampval(&armAng[i],minang[i],maxang[i]) dr0 = deg2rad(armAng[0]) // convert to radians dr1 = deg2rad(armAng[1]) ePos.x = armLen[0] * cos(dr0) // end of elbow ePos.y = armLen[0] * sin(dr0) armPos.x = ePos.x + armLen[1] * cos(dr0 + dr1) // wrist=arm position armPos.y = ePos.y + armLen[1] * sin(dr0 + dr1) updateMLen() // update the muscle lengths // if(verbosearm<0) print "x,y=",armPos.x,armPos.y } //* rotArmTo(angle0,angle1) - rotate the arm to angle0,angle1 proc rotArmTo () { local dsh,delb dsh = $1 - armAng[0] delb = $2 - armAng[1] rotArm(dsh,delb) } //* getArmErr([errtype]) - gets current error in position // 1st arg is optional - if left out, uses global errTY func getArmErr () { local dsq,ety if(numarg()>0) ety=$1 else ety=errTY if(ety == XYERR) { // error as Cartesian distance between hand position and target position return sqrt((armPos.x - tPos.x)^2 + (armPos.y - tPos.y)^2) } else if(ety == ANGERR) { // error as squared difference between joint and target angles return sqrt((armAng[0] - tAng[0])^2 + (armAng[1] - tAng[1])^2) } } //* holdArmPos - hold arm position at target location proc holdArmPos () { local dsh,delb,ph,errxy,errang if(numarg()>=2) { dsh = $1 - armAng[0] delb = $2 - armAng[1] if(numarg()>2) ph=$3 else ph=AMOVE } else { ph = AHOLD dsh = tAng[0] - armAng[0] delb = tAng[1] - armAng[1] if(APHASE == AMOVE) return // last event on queue for hold gets skipped } rotArm(dsh,delb) errxy = getArmErr(XYERR) // gets error in position errang = getArmErr(ANGERR) // gets error in angle nqa.append(t,armAng[0],armAng[1],armPos.x,armPos.y,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),ePos.x,ePos.y,ph,MLen[0],MLen[1],MLen[2],MLen[3],SUBPHASE,errxy,errang) if(DoAnim) drarm() } //* setArmPos - set/save arm position using new joint angles, based on M1 activity in vEM proc setArmPos () { local dsh,delb,ph,errxy,errang,fctr if (numarg()>0) ph=$1 else ph=AMOVE if(rotNorm) { // normalize rotation dx,dy by distance from origin if(armPos.x || armPos.y) fctr = 1 / sqrt(armPos.x^2 + armPos.y^2) else fctr = 1 dsh = rotfctr[0] * fctr * (vEM.x(1) - vEM.x(0)) // should use a sigmoid (?) delb = rotfctr[1] * fctr * (vEM.x(3) - vEM.x(2)) } else { dsh = rotfctr[0] * (vEM.x(1) - vEM.x(0)) // should use a sigmoid (?) delb = rotfctr[1] * (vEM.x(3) - vEM.x(2)) } if(!HoldStill) rotArm(dsh,delb) errxy = getArmErr(XYERR) // gets error in position errang = getArmErr(ANGERR) // gets error in angle // Add a position entry to nqa. nqa.append(t,armAng[0],armAng[1],armPos.x,armPos.y,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),ePos.x,ePos.y,APHASE,MLen[0],MLen[1],MLen[2],MLen[3],SUBPHASE,errxy,errang) } //* updateDP - update the DP cell drive proc updateDP () { local mlentime,nqarow,nqcnum localobj xo // The first argument is the time at which to read muscle lengths. If none // is provided, the default is the current time. if (numarg() > 0) { mlentime = $1 nqa.verbose = 0 nqarow = nqa.select("t","<=",mlentime) - 1 nqa.tog() nqa.verbose = 1 } else mlentime = t nqcnum = nqaupd.fi("spupd") //Remember that we update the DP cells in nqaupd. nqaupd.v[nqcnum].x(nqaupd.v.size-1) = 1 // Loop over all DP cells and update them. nqcnum = nqa.fi("ML0") for ltr(xo,cedp) { if (mlentime == t) { xo.updatedrive()//Call cell update, having it use the current MLen[zloc]. } else { xo.updatedrive(nqa.v[nqcnum+xo.zloc].x(nqarow))//Call cell update passing in appropriate muscle length. } } } //* resetArmPos - put arm back in starting position, updating nqa and vEM settings proc resetArmPos () { if(DoReset == 1) { holdArmPos(sAng[0],sAng[1],ARESET) } else if(DoReset==2) { holdArmPos(ardm.discunif(minang[0],maxang[0]),ardm.discunif(minang[1],maxang[1]),ARESET) } } //* LearnON - turn on learning proc LearnON () { plaststartT_INTF6 = 0 plastendT_INTF6 = tstop * 2 } //* LearnOFF - turn off learning proc LearnOFF () { plaststartT_INTF6 = tstop * 2 plastendT_INTF6 = tstop * 3 } //* svsywts - save synaptic weights from L5 cells proc svsywts () { local i,a localobj xo,vwg,vtau,vinc,vmaxw,vidx,vt,vpre // print "svsywts: t " , t a=allocvecs(vidx,vwg,vtau,vinc,vmaxw,vt,vpre) for ltr(xo,col[0].ce) { if(xo.type==ES) { vrsz(xo.getdvi(vidx),vwg,vtau,vinc,vmaxw,vt,vpre) xo.getplast(vwg,vtau,vinc,vmaxw) // get current weight gains vt.fill(t) //time vpre.fill(xo.id) //presynaptic id nqsy.v[0].append(vpre) nqsy.v[1].append(vidx) nqsy.v[2].append(vwg) nqsy.v[3].append(vt) } } dealloc(a) } //* RLUpdate - reinforcement learning updateupdate proc RLUpdate () { local err1xy,err2xy,err1ang,err2ang,err1,err2,nqcnum,cflip // If we have at least 2 nqa entries... if (nqa.v.size > 1) { // Find the distance error of the 2nd-to-last hand position (in // nqa) from the target hand position. err1xy = nqa.getcol("errxy").x(nqa.v.size-2) // Find the distance error of the last hand position (in // nqa) from the target hand position. err2xy = nqa.getcol("errxy").x(nqa.v.size-1) // Find the distance error of the 2nd-to-last hand position (in // nqa) from the target hand position. err1ang = nqa.getcol("errang").x(nqa.v.size-2) // Find the distance error of the last hand position (in // nqa) from the target hand position. err2ang = nqa.getcol("errang").x(nqa.v.size-1) if(XYERR == errTY) { err1 = err1xy err2 = err2xy } else { err1 = err1ang err2 = err2ang } if(verbosearm) print "err1 : ", err1, " err2 " , err2 if ((DoLearn == 4) && (RLMode > 0)) { // RL with dopamine cflip=0 if(COMBERR) { if( err1xy - err2xy >= minRLerrchangeLTP && err1ang < err2ang ) { cflip = 1 // do LTD } //else if( err2xy - err1xy >= minRLerrchangeLTD && err1ang > err2ang ) { //cflip = 1 // do LTP ?? // } } nqcnum = nqaupd.fi("reinf") // print "err1 ", err1, " err2 " , err2, "LTDCount", LTDCount if ((err1 - err2 >= minRLerrchangeLTP) && ((RLMode == 1) || (RLMode == 3)) && !cflip) { // if(AdaptLearn) EPOTW_INTF6 = (err1 - err2) / err1 // else EPOTW_INTF6=1 col[0].ce.o(0).dopelearn(1) // LTP nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = 1 // put in nqaupd LTDCount = 0 // print "LTDCount is now 0 , A" if(AdaptNoise) { // drop noise towards baseline EMNoiseRate -= EMNoiseRateDec if(EMNoiseRate < 0) EMNoiseRate = 0 if(verbosearm) print "setting EMNoiseRate to ", EMNoiseRate SetEMNoiseRate(EMNoiseRate) } } else if (cflip || ((err2 - err1 >= minRLerrchangeLTD) && ((RLMode == 2) || (RLMode == 3)))) { // if(AdaptLearn) EDEPW_INTF6 = (err2 - err1) / err1 // else EDEPW_INTF6=1 col[0].ce.o(0).dopelearn(-1) // LTD nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = -1 // put in nqaupd LTDCount += 1 } else if(err2>0 && err2==err1) LTDCount += 1 if(AdaptNoise && LTDCount >= StuckCount) { // if arm gets stuck, increase noise EMNoiseRate += EMNoiseRateInc print "now EMNoiseRate is ", EMNoiseRate if(EMNoiseRate > EMNoiseRateMax) EMNoiseRate = EMNoiseRateMax if(verbosearm) print "setting EMNoiseRate to ", EMNoiseRate SetEMNoiseRate(EMNoiseRate) LTDCount = 0 // reset counter to 0 // print "LTDCount is now 0 , B" } } } } //* resetPhase - check which movement phase (move or hold) and set plasticity params proc resetPhase () { local md SUBPHASE = 0 if(APHASE==AMOVE) { // phase was move, now set to hold/learn APHASE = AHOLD cvode.event(t+HoldDur,"resetPhase()") LearnON() } else if(APHASE==AHOLD) { // phase was hold/learn LearnOFF() // turn off learning if(DoReset) { APHASE = ARESET // now set to reset cvode.event(t+ResetDur,"resetPhase()") } else { APHASE = AMOVE // now set to move if(DoRDM==2) { md = MAXxy(aDT,aDT*int(ardm.negexp(MoveDur/aDT))) cvode.event(t+md,"resetPhase()") } else { cvode.event(t+MoveDur,"resetPhase()") } } } else if(APHASE==ARESET) { // phase waws reset, now set to move APHASE = AMOVE if(DoRDM==2) { md = MAXxy(aDT,aDT*int(ardm.negexp(MoveDur/aDT))) cvode.event(t+md,"resetPhase()") } else { cvode.event(t+MoveDur,"resetPhase()") } } print "t : ", t , " set phase to ", ATYP.o(APHASE).s } //* updateArm - update all arm apparatus // This includes muscle commands, joints, muscle spindles, and reinforcement learning signals. proc updateArm () { local errxy,errang,nqcnum,ii,tt readoutEM()//Read M1 muscle group command spike counts since updateArm() call. These go into vEM. if (t == aDT) { // If we are at the beginning of the simulation... nqaupd.append(0,0,0,0,0,0,0,0) // Set up an arm update entry for t=0. // Set up an arm position entry for t=0. errxy = getArmErr(XYERR) // gets error in position errang = getArmErr(ANGERR) // gets error in angle nqa.append(0,armAng[0],armAng[1],armPos.x,armPos.y,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),ePos.x,ePos.y,APHASE,MLen[0],MLen[1],MLen[2],MLen[3],SUBPHASE,errxy,errang) updateDP() // Set up the initial DP cell activity. } // Add vEM to the muscle commands part of the arm update table, nqaupd. nqaupd.append(t,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),0,-1,0) // If it's time for another arm motion... if ((t - lastmovetime >= amoveDT) && (t >= mcmdspkwd + EMlag)) { // Get all of the motor command entries in a window mcmdspkwd ms wide, back // EMlag ms from the current time t. {nqaupd.verbose=0 nqaupd.select("t","[)",t-mcmdspkwd-EMlag,t-EMlag)} // Set vEM to the sum of each of the relevant motor command entries. vEM.x(0) = nqaupd.getcol("shext").sum() vEM.x(1) = nqaupd.getcol("shflex").sum() vEM.x(2) = nqaupd.getcol("elext").sum() vEM.x(3) = nqaupd.getcol("elflex").sum() {nqaupd.tog() nqaupd.verbose=1}// Set the database back. setArmPos() // Set the arm position. if (DoAnim) drarm() // Draw the arm configuration. lastmovetime = t // Remember the time of the event. // Add the nqa row number to the nqaupd table. nqcnum = nqaupd.fi("mvmt") nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = nqa.v.size - 1 } if ((t - lastspdupdate >= spdDT) && (t >= DPlag)){//If it's time for a muscle spindle cell update... updateDP(t-DPlag) // Update DP cell activity. lastspdupdate = t // Remember the time of the event. } // If it's time for an RL update... if ((DoLearn==4) && (t - lastrlupdate > rlDT)) { RLUpdate() // Do an RL update. lastrlupdate = t // Remember the time of the event. } if (syDT > 0 && t - lastsysave >= syDT) { // time for nqsy synaptic save svsywts() // Do a synaptic save. lastsysave = t // Remember the time of the event. } cvode.event(t+aDT,"updateArm()") // Post the next updateArm() event. } //* initArmCB - initialize arm callbacks proc initArmCB () { local i // Set up the muscle commands NQS table. nqsdel(nqaupd) nqaupd = new NQS("t","shext","shflex","elext","elflex","reinf","mvmt","spupd") // Set up the arm NQS table. {nqsdel(nqa) nqa=new NQS("t","ang0","ang1","x","y","shext","shflex","elext","elflex","ex","ey","phase")} nqa.resize("ML0","ML1","ML2","ML3","subphase","errxy","errang") // Clear out the current muscle command array vEM. if(vEM==nil) vEM = new Vector(MTYP.count) else {vEM.resize(MTYP.count) vEM.fill(0)} resetarm() // reset cvode.event(aDT,"updateArm()") if(DoLearn==4) { LearnON() } else LearnOFF() APHASE=AMOVE if(DoRDM) ardm.ACG(aseed) if(DoLearn==1) cvode.event(MoveDur,"resetPhase()") SUBPHASE=0 if(syDT>0) {nqsdel(nqsy) nqsy=new NQS("id1","id2","wg","t") cvode.event(syDT,"svsywts()")} LTDCount = lastmovetime = lastspdupdate = lastrlupdate = lastsysave = 0 if(ResetEMNoiseRate && EMNoiseRate!=sgrhzEE) SetEMNoiseRate(EMNoiseRate=sgrhzEE) } //* mkaid - setup handlers for EM readout -> arm motion proc mkaid () { aid = new FInitializeHandler(1,"initArmCB()") } //* drtarg - draw target location proc drtarg () { local xsz,clr xsz = 0.15 if(numarg()>0) clr=$1 else clr=1 drline(tPos.x-xsz,tPos.y-xsz,tPos.x+xsz,tPos.y+xsz,g,clr,4) // draw an x for the target drline(tPos.x-xsz,tPos.y+xsz,tPos.x+xsz,tPos.y-xsz,g,clr,4) } //* drarm([nqa,row from nqa,erase]) - draw arm location proc drarm () { local idx,ex,ey,wx,wy,ang0,ang1,ers,ln,xsz,she,shf,ele,elf localobj nqa,s ers=1 xsz=0.15 ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) s=new String() if(numarg()>=2) { {nqa=$o1 idx=$2} if(idx < 0 || idx >= nqa.v.size) {printf("drarm ERRA: invalid index: %d,%d\n",idx,nqa.v.size) return} ex = nqa.v[9].x(idx) ey = nqa.v[10].x(idx) wx = nqa.v[3].x(idx) wy = nqa.v[4].x(idx) ang0 = nqa.v[1].x(idx) ang1 = nqa.v[2].x(idx) if(numarg()>=3)ers=$3 if(DoLearn) { sprint(s.s,"t=%g: %g %g %s",nqa.v[0].x(idx),ang0,ang1,ATYP.o(nqa.v[11].x(idx)).s) } else { sprint(s.s,"t=%g: %g %g",nqa.v[0].x(idx),ang0,ang1) } } else { if(numarg()>=1)ers=$1 ex = ePos.x ey = ePos.y wx = armPos.x wy = armPos.y ang0 = armAng[0] ang1 = armAng[1] if(0 && DoLearn) { sprint(s.s,"t=%g: %g %g %s",t,ang0,ang1,ATYP.o(APHASE).s) } else { sprint(s.s,"t=%g: %g %g",t,ang0,ang1) } } // if(verbose) print "ex=",ex,"ey=",ey,"ang0=",ang0,"wx=",wx,"wy=",wy,"ang1=",ang1 if(ers) g.erase_all() drtarg() // draw an x for the target drline(0,0,ex,ey,g,1,4) // draw arm drline(ex,ey,wx,wy,g,9,4) if(DoAnim > 1) { if(NMUSCLES==2) { // draw the muscle lengths drline(3.1,0,3.1,MLen[0],g,2,3) drline(3.2,0,3.2,MLen[1],g,3,3) } else { drline(3.1,0,3.1,MLen[0],g,2,3) drline(3.2,0,3.2,MLen[2],g,3,3) } } // draw motor commands if(DoAnim > 2 && nqaupd!=nil) { {nqaupd.verbose=0 nqaupd.select("t","[)",t-mcmdspkwd-EMlag,t-EMlag)} she = nqaupd.getcol("shext").sum() / ( col.numc[EM] / 4 ) shf = nqaupd.getcol("shflex").sum() / ( col.numc[EM] / 4 ) ele = nqaupd.getcol("elext").sum() / ( col.numc[EM] / 4 ) elf = nqaupd.getcol("elflex").sum() / ( col.numc[EM] / 4 ) drline(0,-3.1,she,-3.1,g,2,3) drline(0,-3.1,-shf,-3.1,g,2,3) drline(0,-3.2,ele,-3.2,g,3,3) drline(0,-3.2,-elf,-3.2,g,3,3) {nqaupd.tog("DB") nqaupd.verbose=1} } g.label(0.55,0.95,s.s) g.flush() doNotify() } //* drxytraj - draws the x,y position from nqa proc drxytraj () { local gvt {gvt=gvmarkflag gvmarkflag=0 g.erase if(nqa==nil) return} {rotArmTo(tAng[0],tAng[1]) drarm()} nqa.gr("y","x",0,2,1) g.exec_menu("View = plot") gvmarkflag=gvt } //* nqa2gif(nqa[,inc]) - saves arm locations in nqa as gif // inc specifies how many frames to skip proc nqa2gif () { local i,j,inc localobj nqa,s if(!FileExists("gif/wg")) system("mkdir gif/wg") nqa=$o1 s=new String() j=0 if(numarg()>1) inc=$2 else inc=1 for(i=0;i1) is=$2 else is=0 if(numarg()>2) ie=$3 else ie=nqa.v.size-1 if(numarg()>3) del=$4 else del=0.25e9 for i=is,ie { drarm(nqa,i) sleepfor(0,del) } } //* whirlgif(outputfile,framesglob[,delframes]) - makes a moving gif using whirlgif // delframes specifies whether to delete the gif frames after func whirlgif () { local del localobj s if(!FileExists("/usr/site/pkgs/download/whirlgif304/whirlgif")) { print "whirlgif ERR0: can't find whirlgif binary!" return 0 } if(numarg()>2) del=$3 else del=1 s=new String2() sprint(s.s,"/usr/site/pkgs/download/whirlgif304/whirlgif -globmap -o %s %s",$s1,$s2) system(s.s) if(del) {system("rm gif/wg/*.gif") printf("whirlgif WARN: deleted %s !\n",$s2)} return 1 } //* whirlnqa(nqa,file[,inc,delframes]) - nqa has arm trajectories // delframes specifies whether to delete the gif frames after func whirlnqa () { local i,del,inc localobj nqa nqa=$o1 if(numarg()>3)inc=$3 else inc=1 if(numarg()>2)del=$4 else del=1 nqa2gif(nqa,inc) return whirlgif($s2, "gif/wg/*.gif",del) } //* setTarg(angle0,angle1) - set target angle proc setTarg () { local dr0,dr1,ex,ey tAng[0] = $1 tAng[1] = $2 dr0 = deg2rad(tAng[0]) // convert to radians dr1 = deg2rad(tAng[1]) ex = armLen[0] * cos(dr0) // end of elbow ey = armLen[0] * sin(dr0) tPos.x = ex + armLen[1] * cos(dr0 + dr1) // target position for end of arm in x,y tPos.y = ey + armLen[1] * sin(dr0 + dr1) } //* setTargByID(targid) - sets target by code $1 proc setTargByID () { local tid tid=$1 if (tid == 0) { setTarg(-15,135) // extreme flexion target } else if (tid == 1) { setTarg(-15,105) } else if (tid == 2) { setTarg(-15,75) // normal target } else if (tid == 3) { setTarg(-15,35) } else if (tid == 4) { setTarg(-15,0) // extreme extension target } else if (tid == 5) { setTarg(90,90) } else if (tid == 6) { setTarg(0,120) } else if (tid == 7) { setTarg(120,0) } else if (tid == 8) { setTarg(120,90) } else if (tid == 9) { setTarg(130,90) } else if (tid == 10) { setTarg(minang[0],minang[1]) } else if (tid == 11) { setTarg(maxang[0],maxang[1]) } else print "setTargByID ERRA: unknown tid == ", tid , " ! " } //* NRTrain(noisemin,noisemax,noisedec,dur) - runs training by gradually decreasing noise to EM cells proc NRTrain () { local i,j,dur,noisemax,noisemin,noisedec resetplast_INTF6=0 noisemin=$1 noisemax=$2 noisedec=$3 dur=$4 tstop = dur for(EMNoiseRate=noisemax;EMNoiseRate>=noisemin;EMNoiseRate-=noisedec) { SetEMNoiseRate(sgrhzEE=EMNoiseRate,0) for i=0,1 { if(i==0) { for j=0,1 sAng[j]=minang[j] print "EMNoiseRate = ", EMNoiseRate, ", start @ minang" } else { for j=0,1 sAng[j]=maxang[j] print "EMNoiseRate = ", EMNoiseRate, " start @ maxang" } run() pravgrates() } } } //* RandTrain(num locations, num iterations @ each location, duration for each iter of each location [,seed]) // performs training with random starting positions proc RandTrain () { local nlocs,i,j,dur,niter,se localobj rdm nlocs=$1 niter=$2 dur=$3 if(numarg()>2)se=$3 else se=213951 resetplast_INTF6=0 rdm=new Random() rdm.ACG(se) tstop = dur for i=0,nlocs-1 { print "location number " , i for j=0,1 sAng[j] = rdm.discunif(minang[j],maxang[j]) for j=0,niter-1 run() } } //* IterTrain(number of iterations, number of increments, duration for each starting position[,savew,incvrse]) proc IterTrain () { local nangs,i,j,k,dur,niter,savew,itmp,a localobj vinc,str,nqw,vrse a=allocvecs(vinc,vrse) vinc.resize(2) niter=$1 nangs=$2 dur=$3 resetplast_INTF6=0 if(numarg()>3) savew=$4 else savew=0 if(numarg()>4) incvrse=$5 else incvrse=1 if(incvrse){vrse.copy(col.cstim.vrse) itmp=initrands initrands=1} str=new String2() for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { print "iteration number " , i for j=0,1 sAng[j] = minang[j] if(incvrse) col.cstim.vrse.copy(vrse) // reset rand seeds to 1st for j=0,nangs { tstop = dur run() for k=0,1 { // increment starting position sAng[k] += vinc.x(k) if(sAng[k] > maxang[k]) sAng[k]=maxang[k] } if(incvrse) col.cstim.vrse.add(1) // increment random seeds for new stream of external inputs } if(savew) if(i%savew==0) { // save weights {sprint(str.s,"data/%s_IterTrain_plastnq_iter_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)} } } if(incvrse) {col.cstim.vrse.copy(vrse) initrands=itmp} // restore rand seeds dealloc(a) } //* IterTrain2D(number of iterations, number of increments, duration for each starting position) proc IterTrain2D () { local nangs,i,j,k,l,dur,niter,savew,a localobj vinc,str,nqw a=allocvecs(vinc) vinc.resize(2) niter=$1 nangs=$2 dur=$3 resetplast_INTF6=0 if(numarg()>3) savew=$4 else savew=0 str=new String2() for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { sAng[0]=minang[0] l=0 // subiteration counter for j=0,nangs { sAng[1]=minang[1] for k=0,nangs { print "train: iter ", i, ", subiter ", l tstop = dur run() sAng[1] += vinc.x(1) // inc elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] l += 1 // subiteration } sAng[0] += vinc.x(0) // inc shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } if(savew) if(i%savew==0) { // save weights {sprint(str.s,"data/%s_IterTrain2D_plastnq_iter_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)} } } dealloc(a) } //* IterTest(number of iterations, number of increments, duration for each starting position[,control,incvrse,svspks]) // NB: WHEN control==1, the weights will be reset to baseline, SO USE WITH CARE!!!!!!!!!!!!! // incvrse allows better control of sequence of random inputs - increments them by 1 for each iteration and then // restores them to initial value at the end. this way, control and trained networks can get same random streams // but also have variability in the streams (if number of iterations > 1). obfunc IterTest () { local ii,nangs,i,j,k,dur,niter,dltmp,ctl,incvrse,itmp,svspks,a localobj vinc,nqo,vrse,str a=allocvecs(vinc,vrse) vinc.resize(2) niter=$1 nangs=$2 dur=$3 if(numarg()>3) ctl=$4 else ctl=0 if(numarg()>4) incvrse=$5 else incvrse=1 if(numarg()>5) svspks=$6 else svspks=0 if(incvrse){vrse.copy(col.cstim.vrse) itmp=initrands initrands=1} str=new String() if(ctl) { print "IterTest WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 dltmp=DoLearn DoLearn=0 // turn off learning for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { for j=0,1 sAng[j] = minang[j] if(incvrse) col.cstim.vrse.copy(vrse) for j=0,nangs { print "test: iter ", i, ", subiter ", j tstop = dur run() {nqa.resize("iter") nqa.pad() nqa.v[nqa.m-1].fill(i)} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(j)} {nqa.resize("sAng0") nqa.pad() nqa.v[nqa.m-1].fill(sAng[0])} {nqa.resize("sAng1") nqa.pad() nqa.v[nqa.m-1].fill(sAng[1])} if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} if(svspks) { // save spikes? {CDX=0 mksnq() CDX=0} // make the NQS with spikes (snq) if(ctl) { sprint(str.s,"data/%s_iter_%d_subiter_%d_snq_control_A5.nqs",strv,i,j) } else { sprint(str.s,"data/%s_iter_%d_subiter_%d_snq_A5.nqs",strv,i,j) } snq.sv(str.s) } for k=0,1 { // increment starting position sAng[k] += vinc.x(k) if(sAng[k] > maxang[k]) sAng[k]=maxang[k] } if(incvrse) col.cstim.vrse.add(1) // increment random seeds for new stream of external inputs } } if(incvrse) {col.cstim.vrse.copy(vrse) initrands=itmp} // restore rand seeds {DoLearn=dltmp dealloc(a) return nqo} } //* AddCountCol(nqa) - add a column of spike counts to nqa. assumes arm in same position in the nqa. proc AddCountCol () { local i,j,tcind,mint,maxt,nc,a localobj nqa,vcnt,vrt {a=allocvecs(vcnt,vrt) nqa=$o1} nc = col[0].cellsnq.size() // get the number of cells from cellsnq mksnq() // make the NQS with spike info {nqa.tog("DB") nqa.resize("vcnt","vrt") nqa.odec("vcnt") nqa.odec("vrt") nqa.pad()} snq.verbose=0 vcnt.resize(nc) vrt.resize(nc) // Remember the column index for "t" in nqa. tcind = nqa.fi("t") // Loop over all the nqa entries... for i = 0, nqa.v.size-1 { // If we are in the first entry (t=0)... if (i == 0) { // Set spike counts and rates to all zeros. vcnt.resize(0) vcnt.resize(nc) vrt.resize(0) vrt.resize(nc) } else { // The minimum time is the previous nqa entry time, and the max. is the current entry. mint = nqa.v[tcind].x(i-1) maxt = nqa.v[tcind].x(i) // Loop over all cell indices... for j = 0, nc - 1 { // Count only those spikes from the right time interval and cell id. vcnt.x(j) = snq.select("id",j,"t","(]",mint,maxt) // Calculate the rate in spikes / s. vrt.x(j) = vcnt.x(j) * 1e3 / (maxt-mint) } } // Set the vcnt and vrt entries for this nqa entry. nqa.set("vcnt",i,vcnt) nqa.set("vrt",i,vrt) } snq.verbose=1 dealloc(a) } //* IterTest2D(number of iterations, number of increments, duration for each starting position[,control,savecounts,savespikes]) // NB: WHEN control==1, the weights will be reset to baseline, SO USE WITH CARE!!!!!!!!!!!!! // savecounts flag specifies whether to add a column to the output NQS that has # of spikes of each // cell at each position (a Vector column). when savespikes is true, a list is returned with two objects. the first // is the nqa and the second is a NQS with spikes for each subiteration. obfunc IterTest2D () { local ii,nangs,i,j,k,l,dur,niter,dltmp,ctl,savec,savespks,a localobj vinc,nqo a=allocvecs(vinc) vinc.resize(2) niter=$1 nangs=$2 dur=$3 if(numarg()>3) ctl=$4 else ctl=0 if(numarg()>4) savec=$5 else savec=0 if(numarg()>5) savespks=$6 else savespks=0 if(ctl) { print "IterTest2D WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 dltmp=DoLearn DoLearn=0 // turn off learning for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { sAng[0]=minang[0] l=0 // subiteration counter for j=0,nangs { sAng[1]=minang[1] for k=0,nangs { print "test: iter ", i, ", subiter ", l tstop = dur run() {nqa.resize("iter") nqa.pad() nqa.v[nqa.m-1].fill(i)} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(l)} {nqa.resize("sAng0") nqa.pad() nqa.v[nqa.m-1].fill(sAng[0])} {nqa.resize("sAng1") nqa.pad() nqa.v[nqa.m-1].fill(sAng[1])} if(savec) AddCountCol(nqa) if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} sAng[1] += vinc.x(1) // inc elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] l += 1 // subiteration } sAng[0] += vinc.x(0) // inc shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } } {DoLearn=dltmp dealloc(a) return nqo} } //* Eval(nq[,noiserate,getall]) - evaluate performance at 256 different positions - meant for short intervals to see if generates // correct motor commands - stores results in $o1 (nq) and returns the same nqs. first time Eval is called can // pass in a nil object. default noise rate is 0. if getall==1, it will store output at each location, regardless // of whether error was increasing or decreasing for that interval obfunc Eval () { local i,j,k,err0,err1,nr,getall,x0,y0,x1,y1,a localobj vinc,nq a=allocvecs(vinc) nq=$o1 if(nq==nil) nq=new NQS("sAng0","sAng1","err0","err1","x0","y0","x1","y1","sid","derr") else nq.clear() if(numarg()>1) nr=$2 else nr=0 if(numarg()>2) getall=$3 else getall=0 EMNoiseRate = sgrhzEE = nr SetEMNoiseRate(EMNoiseRate,0) // set noise to EM cells DoLearn=0 // turn off learning vinc.resize(2) for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/15 sAng[0]=minang[0] k=0 for i=0,15 { sAng[1]=minang[1] for j=0,15 { rotArmTo(sAng[0],sAng[1]) {err0=getArmErr() x0=armPos.x y0=armPos.y} run() {err1=getArmErr() x1=armPos.x y1=armPos.y} if(verbosearm) print "Eval:",sAng[0]," , ",sAng[1]," err0: ",err0,", err1: ",err1 if(getall || (err1 >= err0 && err0 > 0)) nq.append(sAng[0],sAng[1],err0,err1,x0,y0,x1,y1,k,err1-err0) sAng[1] += vinc.x(1) // inc starting elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] k += 1 } sAng[0] += vinc.x(0) // inc starting shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } dealloc(a) return nq } //* TrainAndEval([noiseratelearn,noiserateeval,durtrain,dureval,maxi,savew,evall,dureval2]) - does training from 256 positions // and saving weights and evaluations after each iteration. // noiseratelearn is noise rate for learning mode and noiserateeval is noise rate for // evaluation mode. noiseratelearn default is 200, noiserateeval default is 0. this procedure is meant for // training using short durations (durlearn) for each iteration (default is 400 ms). dureval is the duration // for eavaluation starting from each location. maxi is max # of iterations // of train+eval. default is maxi of 0, which means keeps going until perfect learning attained (non-advisable, // as it may never terminate). when savew>0 the intermediate weights will be saved every savew sessions. the global strv // variable will then be used to determine the filenames to save to. trall determines whether to train on all starting positions // or just those that have incorrect evaluations on last iteration. obfunc TrainAndEval () { local i,j,durlearn,dureval,noiseratelearn,noiserateeval,maxi,savew,trall,dureval2\ localobj nqe,nqo,nqtmp,str,nqw if(numarg()>0) noiseratelearn=$1 else noiseratelearn=200 if(numarg()>1) noiserateeval=$2 else noiserateeval=0 if(numarg()>2) durlearn=$3 else durlearn=500 if(numarg()>3) dureval=$4 else dureval=100 if(numarg()>4) maxi=$5 else maxi=200 if(numarg()>5) savew=$6 else savew=25 if(numarg()>6) trall=$7 else trall=1 if(numarg()>7) dureval2=$8 else dureval2=30e3 {str=new String2() i=0} tstop=1 nqtmp=Eval(nqtmp,noiserateeval,1)//learning is turned off in Eval and noiserate is set to noiserateeval {nqe=new NQS() nqe.cp(nqtmp) nqe.resize("session") nqe.pad() nqe.v[nqe.m-1].fill(-1)} i+=1 // 1 is first training print "did pre-eval" while((i<=maxi || maxi<=0) && nqe.v.size>0) { print "session ", i , " nqe.v.size = " , nqe.v.size DoLearn = 4 tstop=durlearn EMNoiseRate = sgrhzEE = noiseratelearn SetEMNoiseRate(EMNoiseRate,0) for j=0,nqtmp.v.size-1 if(trall || (nqtmp.v[3].x(j)>=nqtmp.v[2].x(j) && nqtmp.v[2].x(j)>0)) { sAng[0] = nqtmp.v[0].x(j) sAng[1] = nqtmp.v[1].x(j) run() } if(savew) if(i%savew==0 || i==1) {// save weights & do evaluations print "Evaluating progress..." tstop=dureval {nqsdel(nqtmp) nqtmp=Eval(nqtmp,noiserateeval,1)} {nqtmp.resize("session") nqtmp.pad() nqtmp.v[nqtmp.m-1].fill(i) nqe.append(nqtmp)} if(dureval2>0) { // do long-term evaluation and save output (trajectory and spikes) tstop=dureval2 print "minang long-term eval..." {sAng[0]=minang[0] sAng[1]=minang[1] run()} {sprint(str.s,"data/%s_minang_nqa_session_%d_.nqs",strv,i) nqa.sv(str.s)} {CDX=0 mksnq() CDX=0 sprint(str.s,"data/%s_minang_snq_session_%d_.nqs",strv,i) snq.sv(str.s)} print "maxang long-term eval..." {sAng[0]=maxang[0] sAng[1]=maxang[1] run()} {sprint(str.s,"data/%s_maxang_nqa_session_%d_.nqs",strv,i) nqa.sv(str.s)} {CDX=0 mksnq() CDX=0 sprint(str.s,"data/%s_maxang_snq_session_%d_.nqs",strv,i) snq.sv(str.s)} } {sprint(str.s,"data/%s_plastnq_session_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)}//save weights } i += 1 } return nqe } //* MultTargTrain(nqc,iters,dur) - performs multiple target training. starting position is middle angle. // nqc must have 2 columns: targid and vrse. targid is target id. vrse is corresponding vector of random // seeds that are copied over to col.cstim.vrse before the run. initrands will be set to 1 so that the // Random objects are initialized properly. proc MultTargTrain () { local i,j,dur,iters localobj nqc,str {initrands=1 nqc=$o1 iters=$2 dur=tstop=$3 resetplast_INTF6=0} for i=0,1 sAng[i] = minang[i] + (maxang[i]-minang[i]) / 2 // start in the middle for i=0,iters-1 { for j=0,nqc.v.size-1 { setTargByID(targid=nqc.v.x(j)) col.cstim.vrse.copy(nqc.get("vrse",j).o) print "train: targid is " , targid, " iter " , i run() } } } //* multtargtrainsv(strv,iters,dur) proc multtargtrainsv () { local dur,iters,a localobj nqc,str,vorig,vtmp a=allocvecs(vorig,vtmp) vorig.copy(col.cstim.vrse) // copy the current random seeds str=new String2() sprint(str.s,"data/%s_",$s1) // base path for output files {nqc=new NQS("targid","vrse") nqc.odec("vrse")} nqc.append(10,col.cstim.vrse) // targ at minima in both angles vtmp.copy(col.cstim.vrse) // this assumes col.cstim.vrse wasn't messed with {vtmp.add(10) nqc.append(11,vtmp)} // targ at maxima in both angles iters=$2 dur=tstop=$3 MultTargTrain(nqc,iters,dur) // does the training sprint(str.t,"%s_multtarg_plastnq_B1.nqs",str.s) {nq=getplastnq(col[0]) nq.sv(str.t) nqsdel(nq)} col.cstim.vrse.copy(vorig) // restore the origina random seeds {sprint(str.t,"%s_multtarg_nqs_B2.nqs",str.s) nqc.sv(str.t)} {dealloc(a) nqsdel(nqc)} } //* MultTargTest(nqc,dur[,control,svspks]) - does testing of mult target sim // nqc has the random seeds used as a cue. returns nqs with trajectories // for the different cues. this function assumes arm starts in midpoint of // both of its angles obfunc MultTargTest () { local i,dur,ctl,itmp,dltmp,svspks,a localobj nq,nqc,vec,vrse,nqo,str a=allocvecs(vrse,vec) nqc=$o1 dur=tstop=$2 if(numarg()>2) ctl=$3 else ctl=0 if(numarg()>3) svspks=$4 else svspks=0 str=new String2() if(ctl) { print "MultTargTest WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 vrse.copy(col.cstim.vrse) // backup the seeds dltmp=DoLearn DoLearn=0 // turn off learning itmp=initrands initrands=1 for i=0,1 sAng[i] = minang[i] + (maxang[i]-minang[i]) / 2 // start in the middle for i=0,nqc.v.size-1 { setTargByID(targid=nqc.v.x(i)) print "targ " , targid col.cstim.vrse.copy(nqc.get("vrse",i).o) run() {nqa.resize("targid") nqa.pad() nqa.v[nqa.m-1].fill(targid)} {nqa.resize("tAng0") nqa.pad() nqa.v[nqa.m-1].fill(tAng[0])} {nqa.resize("tAng1") nqa.pad() nqa.v[nqa.m-1].fill(tAng[1])} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(i)} if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} if(svspks) { // save spikes? {CDX=0 mksnq() CDX=0} // make the NQS with spikes (snq) if(ctl) { sprint(str.s,"data/%s_multtarg_subiter_%d_snq_control_B5.nqs",strv,i) } else { sprint(str.s,"data/%s_multtarg_subiter_%d_snq_B5.nqs",strv,i) } snq.sv(str.s) } } {DoLearn=dltmp initrands=itmp col.cstim.vrse.copy(vrse) dealloc(a) return nqo} } //* multtargtestsv(simstr[,dur,twod,skipc,svspks]) - run mult targ testing and save output // iff skipc==1 , skip control. // see MultTargTest for more details. svspks - save the snq spike NQS for each subiteration of MultTargTest? uses // strv and iter,subiter,etc. information for the output filename. proc multtargtestsv () { local iters,nl,dur,twod,c,skipc,svspks localobj str,nq,nqc DoLearn = syDT = 0 str=new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s__multtarg_plastnq_B1.nqs",str.s) {nq=new NQS(str.t) setplastnq(nq,col[0]) nqsdel(nq)}// this loads the learned weights print "loaded weights from ", str.t {sprint(str.t,"%s__multtarg_nqs_B2.nqs",str.s) nqc=new NQS(str.t)} print "loaded vrse from " , str.t if(numarg()>1) dur=$2 else dur=30e3 if(numarg()>2) twod=$3 else twod=0 if(numarg()>3) skipc=$4 else skipc=0 if(numarg()>4) svspks=$5 else svspks=0 for c=0,1 { if(skipc && c==1) continue if(twod) { //nq=IterTest2D(iters,nl,dur,c) //if(HoldStill) addhyperrcols(nq) // add the hypothetical moves if running with HoldStill==1 //if(c==0) sprint(str.t,"%s_itertest2D_A3.nqs",str.s) else sprint(str.t,"%s_itertest2D_control_A4.nqs",str.s) } else { nq=MultTargTest(nqc,dur,c,svspks) if(c==0) sprint(str.t,"%s_MultTargTest1D_B3.nqs",str.s) else sprint(str.t,"%s_MultTargTest1D_control_B4.nqs",str.s) } nq.sv(str.t) print "saved ", str.t nqsdel(nq) } nqsdel(nqc) } //* addhyperrcols(nqs from IterTest or IterTest2D) - adds hypothetical moves/errors from // a IterTest with HoldStill==1, to see what the output moves would be // with fixed positions and then to calculate the errors proc addhyperrcols () { local i,s0,s1,errsh,errel,errp,sx,sy,nx,ny,err0,err1,dx,dy localobj nqo nqo=$o1 nqo.tog("DB") if(nqo.fi("dy")==-1) { nqo.resize("dirsh","direl","errsh","errel","errp","errxy","dx","dy") nqo.pad() } for i=0,nqo.v.size-1 { dirsh = nqo.getcol("shflex").x(i) - nqo.getcol("shext").x(i) // shoulder rot command direl = nqo.getcol("elflex").x(i) - nqo.getcol("elext").x(i) // elbow rot command s0 = nqo.getcol("sAng0").x(i) // starting angle s1 = nqo.getcol("sAng1").x(i) if(abs(s0 + dirsh - tAng[0] ) < abs(s0 - tAng[0])) { errsh = -abs(dirsh) // angular error was reduced } else errsh = abs(dirsh) // angular error was increased if(abs(s1 + direl - tAng[1] ) < abs(s1 - tAng[1])) { errel = -abs(direl) // angular error was reduced } else errel = abs(direl) // angular error was increased errp = errsh + errel sx=getarmX(deg2rad(s0),deg2rad(s1)) // starting x sy=getarmY(deg2rad(s0),deg2rad(s1)) // starting y err0 = sqrt( (sx-tPos.x)^2 + (sy-tPos.y)^2) // starting error nx=getarmX(deg2rad(s0+dirsh),deg2rad(s1+direl)) // new x ny=getarmY(deg2rad(s0+dirsh),deg2rad(s1+direl)) // new y err1 = sqrt( (nx-tPos.x)^2 + (ny-tPos.y)^2) // error after hypothetical move if(err10)ct=$1 else ct=DP if(numarg()>1)cdx=$2 else cdx=0 if(ct==DP) nqrf.resize("mid","ml") if(snq[cdx]==nil) {i=CDX CDX=cdx mksnq() CDX=i} nqrf.clear(snq[cdx].select("type",DP)) snq[cdx].tog("DB") nqa.tog("DB") nqa.verbose=snq[cdx].verbose=0 tdx=0 tt=snq[cdx].getcol("t").x(0) for i=1,nqa.v.size-1 { if(i%10==0)printf(".") while(tt < nqa.getcol("t").x(i) && tdx < snq[cdx].v.size) { if(snq[cdx].getcol("type").x(tdx)==ct) { id=snq[cdx].getcol("id").x(tdx) ang0=nqa.getcol("ang0").x(i-1) ang1=nqa.getcol("ang1").x(i-1) // cedp.o(id).subtype if(ct==DP) { mid=cedp.o(id-col[cdx].ix[ct]).zloc ml=nqa.v[mid+12].x(i-1) nqrf.append(i-1,id,ct,ang0,ang1,nqa.v[12].x(i-1),nqa.v[13].x(i-1),nqa.v[14].x(i-1),nqa.v[15].x(i-1),tt,mid,ml) } else { nqrf.append(i-1,id,ct,ang0,ang1,nqa.v[12].x(i-1),nqa.v[13].x(i-1),nqa.v[14].x(i-1),nqa.v[15].x(i-1),tt) } } tdx += 1 if(tdx2)nrm=$3 else nrm=1 a=allocvecs(vx,vy,vcnt) vrsz(nq.getcol("x").uniq,vx,vy) nq.getcol("x").uniq(vx) nq.getcol("y").uniq(vy) nqrf=new NQS("x","y","cnt") for i=0,nq.v.size-1 { x = nq.getcol("x").x(i) y = nq.getcol("y").x(i) cnt=nq.get("vcnt",i).o.x(id) if(nqrf.select(-1,"x",x,"y",y)) { nqrf.v[2].x(nqrf.ind.x(0)) += cnt } else nqrf.append(x,y,cnt) } dealloc(a) if(nrm) nqrf.getcol("cnt").div(nqrf.getcol("cnt").max()) return nqrf } //* drcellrf(nqs from getcellrf[,sz]) - draws the count per position using data from the nqs // green dots are starting x,y . blue is ending. red line height is # spikes @ x,y. // sz is the height,width of markers for the x,y positions // the nqs ($o1) is obtained from getcellrf proc drcellrf () { local i,x,y,n,sz localobj nqr nqr=$o1 if(numarg()>1)sz=$2 else sz=0.01 for i=0,nqr.v.size-1 { x = nqr.v[0].x(i) y = nqr.v[1].x(i) n = nqr.v[2].x(i) drline(x,y,x,y+n,g,2,3) drline(x-sz,y-sz,x+sz,y-sz,g,4,3) drline(x-sz,y+n+sz,x+sz,y+n+sz,g,3,3) } } // // Analysis functions (adding these here to avoid putting them always in notebook) // //* drerrRL - draw error and reinforcement signal proc drerrRL () { local gvt gvt=gvmarkflag gvmarkflag=1 nqaupd.gr("reinf","t",0,2,12) // reinforcement signal in red nqa.gr("err","t",0,3,12) // cartesian error in blue gvmarkflag=0 nqaupd.gr("reinf","t",0,2,4) // reinforcement signal in red nqa.gr("err","t",0,3,4) // cartesian error in blue gvmarkflag=gvt } //* drelbowtrajectory([linestyle,erase]) -- show the elbows trajectory vs. the target angle proc drelbowtrajectory () { local ln,ers if(numarg()>0) ln=$1 else ln=1 if(numarg()>1) ers=$2 else ers=0 if(ers) g.erase_all() drline(0,minang[1],t,minang[1],g,1,5) drline(0,maxang[1],t,maxang[1],g,1,5) nqa.gr("ang1","t",0,3,ln) drline(0,tAng[1],t,tAng[1],g,3,2) } //* drshouldertrajectory([linestyle,erase]) -- show the shoulder's trajectory vs. the target angle proc drshouldertrajectory () { local ln,ers if(numarg()>0) ln=$1 else ln=1 if(numarg()>1) ers=$2 else ers=0 if(ers) g.erase_all() drline(0,minang[0],t,minang[0],g,9,5) drline(0,maxang[0],t,maxang[0],g,9,5) nqa.gr("ang0","t",0,2,ln) drline(0,tAng[0],t,tAng[0],g,2,2) } //* addnqacol2nqaupd proc addnqacol2nqaupd () { local nqcnum,nqcnum2,nqcnum3,nqaind,ii nqaupd.resize($s1) // add column to look at nqcnum = nqaupd.fi($s1) nqcnum2 = nqaupd.fi("mvmt") nqcnum3 = nqa.fi($s1) nqaupd.v[nqcnum].resize(nqaupd.v.size) // pad the column with zeros nqaind = -1 for ii=0,nqaupd.v.size-1 { if ((nqaupd.v[nqcnum2].x(ii) != -1) && (nqaupd.v[nqcnum2].x(ii) != nqaind)) { nqaind = nqaupd.v[nqcnum2].x(ii) } nqaupd.v[nqcnum].x(ii) = nqa.v[nqcnum3].x(nqaind) } } //* getavgsyvst(nqsy,ty1,ty2[,CDX]) - get average synaptic weight vs time obfunc getavgsyvst () { local i,ty1,ty2,cdx localobj ls,vt,vwg,nqsy nqsy=$o1 ty1=$2 ty2=$3 if(numarg()>3) cdx=$4 else cdx=0 ls=new List() ls.append(vt=new Vector(nqsy.v.size)) ls.append(vwg=new Vector(nqsy.v.size)) vwg.resize(0) nqsy.tog("DB") nqsy.getcol("t").uniq(vt) nqsy.verbose=0 for vtr(&i,vt) if(nqsy.select("t",i,"id1","[]",col[cdx].ix[ty1],col[cdx].ixe[ty1],"id2","[]",col[cdx].ix[ty2],col[cdx].ixe[ty2])) { vwg.append(nqsy.getcol("wg").mean) } nqsy.verbose=1 return ls // return list with vector of times and average weights } //* mkavgsyvst(nqsy) proc mkavgsyvst () { local i,j localobj str,nqsy str=new String() nqsy=$o1 for case(&i,ES) for case(&j,EM) if(pmat[0][0][i][j]) { print CTYP.o(i).s,"->",CTYP.o(j).s lssyavg[i][j] = getavgsyvst(nqsy,i,j) sprint(str.s,"%s->%s",CTYP.o(i).s,CTYP.o(j).s) lssyavg[i][j].o(1).label(str.s) } } //* drxyvecfield(nqo[,scale]) - draw xy trajectory from IterTest or IterTest2D NQS // that had addhyperrefcol called on it - this NQS should be generated // post learning with HoldStill set to 1. scale sets scaling for vectors (default==1) proc drxyvecfield () { local eidx,i,x0,y0,x1,y1,xsz,scale,err0,err1,clr,a localobj vx1,vy1,vx2,vy2,nqo nqo=$o1 if(numarg()>1)scale=$2 else scale=1 {a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} {rotArmTo(tAng[0],tAng[1]) drarm()} {nqo.verbose=0 nqo.tog("DB") eidx=nqo.getcol("subiter").max()} for i=0,eidx if(nqo.select("subiter",i)) { x0 = nqo.getcol("x").mean() y0 = nqo.getcol("y").mean() err0 = sqrt((x0-tPos.x)^2+(y0-tPos.y)^2) x1 = x0 + nqo.getcol("dx").mean() // without scale for err calc y1 = y0 + nqo.getcol("dy").mean() err1 = sqrt((x1-tPos.x)^2+(y1-tPos.y)^2) if(err1<=err0) clr=2 else clr=9 x1 = x0 + nqo.getcol("dx").mean() * scale // with scale for drawing y1 = y0 + nqo.getcol("dy").mean() * scale drline(x0,y0,x1,y1,g,clr,3) {vx1.append(x0) vy1.append(y0) vx2.append(x1) vy2.append(y1)} } nqo.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) xsz=0.1 drline(tPos.x-xsz,tPos.y-xsz,tPos.x+xsz,tPos.y+xsz,g,1,4) // draw an x for the target drline(tPos.x-xsz,tPos.y+xsz,tPos.x+xsz,tPos.y-xsz,g,1,4) dealloc(a) } //* drrotvecfield(nqo[,xsz,scale]) - draw angular trajectory from IterTest or IterTest2D NQS // that had addhyperrefcol called on it - this NQS should be generated // post learning with HoldStill set to 1. xsz is size of target proc drrotvecfield () { local eidx,i,s0,s1,n0,n1,xsz,scale,a localobj vx1,vy1,vx2,vy2,nqo {nqo=$o1 a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} {nqo.verbose=0 nqo.tog("DB") eidx=nqo.getcol("subiter").max()} if(numarg()>1)xsz=$2 else xsz=5 if(numarg()>2)scale=$3 else scale=1 for i=0,eidx if(nqo.select("subiter",i)) { s0 = nqo.getcol("sAng0").mean() s1 = nqo.getcol("sAng1").mean() n0 = s0 + nqo.getcol("dirsh").mean() * scale n1 = s1 + nqo.getcol("direl").mean() * scale drline(s0,s1,n0,n1,g,2,3) {vx1.append(s0) vy1.append(s1) vx2.append(n0) vy2.append(n1)} } nqo.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) if(numarg()>1) xsz=$2 else xsz=5 drline(tAng[0]-xsz,tAng[1]-xsz,tAng[0]+xsz,tAng[1]+xsz,g,1,4) // draw an x for the target drline(tAng[0]-xsz,tAng[1]+xsz,tAng[0]+xsz,tAng[1]-xsz,g,1,4) dealloc(a) } //* drnqEval(nqs from Eval function[, scale]) - draws vectors from Eval, red for lines that decrease error // gray for lines that increased it proc drnqEval () { local eidx,i,dx,dy,x0,y0,x1,y1,xsz,scale,e0,e1,a localobj vx1,vy1,vx2,vy2,nq nq=$o1 if(numarg()>1)scale=$2 else scale=1 {a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} {rotArmTo(tAng[0],tAng[1]) drarm()} {nq.verbose=0 nq.tog("DB") eidx=nq.v.size-1} for i=0,eidx { x0 = nq.getcol("x0").x(i) y0 = nq.getcol("y0").x(i) x1 = nq.getcol("x1").x(i) y1 = nq.getcol("y1").x(i) dx = (x1 - x0) * scale dy = (y1 - y0) * scale e0 = nq.getcol("err0").x(i) e1 = nq.getcol("err1").x(i) if(e0 > e1) { drline(x0,y0,x0+dx,y0+dy,g,2,3) } else drline(x0,y0,x0+dx,y0+dy,g,9,3) {vx1.append(x0) vy1.append(y0) vx2.append(x1) vy2.append(y1)} } nq.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) xsz=0.1 drline(tPos.x-xsz,tPos.y-xsz,tPos.x+xsz,tPos.y+xsz,g,1,4) // draw an x for the target drline(tPos.x-xsz,tPos.y+xsz,tPos.x+xsz,tPos.y-xsz,g,1,4) dealloc(a) } //* DPatang(shoulder angle,elbow angle) - get Vector of DP cell IDs activated at the particular angles obfunc DPatang () { local i,a0,a1 localobj vid,c vid=new Vector() a0=$1 a1=$2 // a0 is shoulder, a1 is elbow angle if(verbosearm) print "WARN: rotated to ", a0, a1 rotArmTo(a0,a1) // rotate arm to target angle so can check muscle length activations for ltr(c,cedp) { // go thru each DP cell if(MLen[c.zloc] >= c.mlenmin && MLen[c.zloc] <= c.mlenmax) { // check each DP cell's muscle activation vid.append(c.id) // save the cell's id } } return vid // return the Vector of IDs } //* ESatang(shoulder angle,elbow angle) - get Vector of ES cell IDs activated at the particular angles obfunc ESatang () { local a,id1,id2,i,a0,a1 localobj vid,vidu,vDP,c a=allocvecs(vid) vidu=new Vector() a0=$1 a1=$2 vDP = DPatang(a0,a1) // first get DP cells activated at the angle, then see which ES cells they project to col.connsnq.verbose=0 for vtr(&id1,vDP) if(col.connsnq.select("id1",id1,"id2","[]",col.ix[ES],col.ixe[ES])) { vid.append(col.connsnq.getcol("id2")) } col.connsnq.verbose=1 vidu.resize(vid.size) vid.uniq(vidu) // get rid of duplicate ES cell IDs dealloc(a) return vidu // return the IDs } //* EMatang(shoulder angle,elbow angle) - get Vector of EM cell IDs activated at the particular angles obfunc EMatang () { local a,id1,id2,i,a0,a1 localobj vid,vidu,vES,c a=allocvecs(vid) vidu=new Vector() a0=$1 a1=$2 vES = ESatang(a0,a1) // first get the ES cells activated at the angle, then see which EM cells they project to col.connsnq.verbose=0 for vtr(&id1,vES) { // go thru presynaptic ES cells & check which EM cells they project to if(col.connsnq.select("id1",id1,"id2","[]",col.ix[EM],col.ixe[EM])){//use connectivity NQS for projections vid.append(col.connsnq.getcol("id2")) // save the IDs } } col.connsnq.verbose=1 vidu.resize(vid.size) vid.uniq(vidu) // get rid of duplicate EM cell IDs dealloc(a) return vidu // return the IDs } //* MCMDatang(shoulder angle,elbow angle) - motor command at angle - gets motor command based on which EM cells activated obfunc MCMDatang () { local a,id1,id2,i,a0,a1,fctr localobj vidm,vcmd,vem vcmd=new Vector(4) a0=$1 a1=$2 vidm=EMatang(a0,a1) // get which EM cells activated at the angle for vtr(&id1,vidm) vcmd.x(nqE.v[3].x(id1-col.ix[EM]))+=1 if(rotNorm) { // normalize rotation dx,dy by distance from origin if(armPos.x || armPos.y) fctr = 1 / sqrt(armPos.x^2 + armPos.y^2) else fctr = 1 vcmd.x(0) = rotfctr[0] * fctr * (vcmd.x(1) - vcmd.x(0)) // should use a sigmoid (?) vcmd.x(1) = rotfctr[1] * fctr * (vcmd.x(3) - vcmd.x(2)) } else { vcmd.x(0) = rotfctr[0] * (vcmd.x(1) - vcmd.x(0)) // should use a sigmoid (?) vcmd.x(1) = rotfctr[1] * (vcmd.x(3) - vcmd.x(2)) } vcmd.resize(2) return vcmd } //* MCMDmapnq([angle increment]) - get an NQS with motor command for each angle pair // just uses static connectivity from DP -> ES -> EM obfunc MCMDmapnq () { local a0,a1,inc,x0,y0,x1,y1 localobj vcmd,nq if(numarg()>0) inc=$1 else inc=5 nq=new NQS("a0","a1","x0","y0","x1","y1","dsh","del") for(a0=0;a0<=maxang[0];a0+=inc) { for(a1=0;a1<=maxang[1];a1+=inc) { vcmd=MCMDatang(a0,a1) x0=armPos.x y0=armPos.y rotArm(vcmd.x(0),vcmd.x(1)) x1=armPos.x y1=armPos.y nq.append(a0,a1,x0,y0,x1,y1,vcmd.x(0),vcmd.x(1)) } } return nq } //* drMCMDmapnq(nqs from MCMDmapnq) - draws the NQS proc drMCMDmapnq () { local x0,y0,x1,y1,i localobj nq nq=$o1 nq.verbose=0 nq.tog("DB") gvmarkflag=1 nq.gr("y0","x0",0,4,8) for i=0,nq.v.size-1 { x0 = nq.getcol("x0").x(i) y0 = nq.getcol("y0").x(i) x1 = nq.getcol("x1").x(i) y1 = nq.getcol("y1").x(i) drline(x0,y0,x1,y1,g,2,3) } nq.gr("y1","x1",0,3,8) nq.verbose=1 } //* run and init nqs objects proc myrun () { local i localobj xo run() // Do the normal run. // For all of the columns, make spike NQS tables, snq[]. for CDX=0,numcols-1 { print "CDX:",CDX mksnq() pravgrates() // Show average firing rates for each column. } CDX=0 // Load the analysis tables for column 1. if(numarg()>0) initMyNQs() // make all of the usual analysis tables. // initAllMyNQs() // make all of the desired synaptic weights. if(syDT) mkavgsyvst(nqsy) } //* mysv - save output after myrun proc mysv () { localobj s,nq s = new String() CDX=0 // Save the snq for column 1. sprint(s.s,"data/%s_%s_snq.nqs",$s1,col[CDX].name) {snq[CDX].tog("DB") snq[CDX].sv(s.s)} // Save the global LFP for column 1. sprint(s.s,"data/%s_%s_LFP.nqs",$s1,col[CDX].name) {nqLFP[CDX].tog("DB") nqLFP[CDX].sv(s.s)} // Save the nqa table. {sprint(s.s,"data/%s_nqa.nqs",$s1) nqa.tog("DB") nqa.sv(s.s)} // Save an nq for the average synaptic weight changes. if(syDT) { nq = new NQS("t","EStoEMavgwtgn") nq.setcol("t",lssyavg[ES][EM].o(0)) nq.setcol("EStoEMavgwtgn",lssyavg[ES][EM].o(1)) sprint(s.s,"data/%s_EStoEMavgwtgn.nqs",$s1) {nq.tog("DB") nq.sv(s.s)} nqsdel(nq) } /* {sprint(s.s,"/u/samn/intfstdp/data/%s_snq.nqs",$s1) snq.tog("DB") snq.sv(s.s)} if(nqrat!=nil) { {sprint(s.s,"/u/samn/intfstdp/data/%s_nqrat.nqs",$s1) nqrat.tog("DB") nqrat.sv(s.s)} } if(mynqp.size>0) { {sprint(s.s,"/u/samn/intfstdp/data/%s_mynqp.nqs",$s1) mynqp.tog("DB") mynqp.sv(s.s)} } {nqsdel(wgnq) wgnq=mkwgnq(col) sprint(s.s,"/u/samn/intfstdp/data/%s_wgnq.nqs",strv) wgnq.sv(s.s)} */ } //* myrunsv(simstr) - run & save output proc myrunsv () { myrun() mysv($s1) } //* mytrainrunsv(simstr,type[,iters,numlevels/numlocations,dur,seed,savew]) - run with training and save weights // type specifies training method: -2 == NRTrain, -1 == RandTrain, 0==IterTrain, 1==IterTrain2D // when savew is specified, save weights every savew iteration in IterTrain // seed specifies random seed for use in RandTrain // when using type==-2:NRTrain $s1==strv,$3==noisemin,$4==noisemax,$5==noisedec,$6==dur proc mytrainrunsv () { local iters,nl,dur,ty,se,noisemin,noisemax,noisedec,savew localobj str str=new String2() ty=$2 // type of training if(ty!=-2) { if(numarg()>2) iters=$3 else iters=100 // # of iterations at each location if(numarg()>3) nl=$4 else nl=15 // # of levels for iterative training or # of locations for random training if(numarg()>4) dur=$5 else dur=10e3 // duration for each subiteration if(numarg()>5) se=$6 else se=213951 // random seed for RandTrain - determines starting locations if(numarg()>6) savew=$7 else savew=0 } else { noisemin=$3 noisemax=$4 noisedec=$5 dur=$6 } sprint(str.s,"data/%s_",$s1) // base path for output files if(ty == -2) { NRTrain(noisemin,noisemax,noisedec,dur) } else if(ty == -1) { RandTrain(nl,iters,dur,se) // training with randomized start positions } else if(ty==1) { IterTrain2D(iters,nl,dur) // 2D iterative train } else IterTrain(iters,nl,dur,savew) // 1D iterative train {nqsdel(nq[0]) nq[0]=mkwgnq(col[0]) sprint(str.t,"%s_wgnq_A1.nqs",str.s) nq[0].sv(str.t)} // save output print "saved ", str.t {nqsdel(nq[1]) nq[1]=getplastnq(col[0]) sprint(str.t,"%s_plastnq_A2.nqs",str.s) nq[1].sv(str.t)} print "saved ", str.t } //* mytestrunsv(simstr[,iters,numlevels,dur,twod,skipc,incvrse,svspks]) - run with training and save weights // iff skipc==1 , skip control. incvrse controls the random seeds used in IterTest (not used in IterTest2D). // see IterTest for more details. svspks - save the snq spike NQS for each subiteration of IterTest? uses // strv and iter,subiter,etc. information for the output filename. proc mytestrunsv () { local iters,nl,dur,twod,c,skipc,incvrse,svspks localobj str,nq DoLearn = syDT = 0 str=new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s__plastnq_A2.nqs",str.s) nq=new NQS(str.t) setplastnq(nq,col[0]) // this loads the learned weights nqsdel(nq) print "loaded weights from ", str.t if(numarg()>1) iters=$2 else iters=1 if(numarg()>2) nl=$3 else nl=15 if(numarg()>3) dur=$4 else dur=10e3 if(numarg()>4) twod=$5 else twod=0 if(numarg()>5) skipc=$6 else skipc=0 if(numarg()>6) incvrse=$7 else incvrse=0 if(numarg()>7) svspks=$8 else svspks=0 for c=0,1 { if(skipc && c==1) continue if(twod) { nq=IterTest2D(iters,nl,dur,c) if(HoldStill) addhyperrcols(nq) // add the hypothetical moves if running with HoldStill==1 if(c==0) sprint(str.t,"%s_itertest2D_A3.nqs",str.s) else sprint(str.t,"%s_itertest2D_control_A4.nqs",str.s) } else { nq=IterTest(iters,nl,dur,c,incvrse,svspks) if(c==0) sprint(str.t,"%s_itertest1D_A3.nqs",str.s) else sprint(str.t,"%s_itertest1D_control_A4.nqs",str.s) } nq.sv(str.t) print "saved ", str.t nqsdel(nq) } } //* get a List of Lists with the noise NetStims for EM cells obfunc LEMNoise () { local i,sy localobj nc,ncl,nsl,ls ncl=col.cstim.ncl nsl=col.cstim.nsl ls=new List() for case(&sy,AM2,NM2,GA,GA2) ls.append(new List()) for ltr(nc,ncl,&i) { if(nc.syn.type == EM) { if(nc.weight[AM2]>0) { ls.o(0).append(nsl.o(i)) } else if(nc.weight[NM2]>0) { ls.o(1).append(nsl.o(i)) } else if(nc.weight[GA]>0) { ls.o(2).append(nsl.o(i)) } else if(nc.weight[GA2]>0) { ls.o(3).append(nsl.o(i)) } } } return ls } //* SetEMNoiseRate(rate,index) - set rate of EM cell noise // index: 0==AM2, 1==NM2, 2==GA, 3==GA2 proc SetEMNoiseRate () { local i,rate,idx localobj ns rate=$1 if(numarg()>1) idx=$2 else idx=0 // print "rate is ", rate, "idx is ", idx if(lem==nil) lem=LEMNoise() for ltr(ns,lem.o(idx)) { if(rate <= 0) { ns.number = 0 } else { ns.interval = 1e3 / rate ns.number = tstop * rate / 1e3 } } } //* func calls mkmyTYP() initarm() assignEM() recE() mkaid() setTargByID(targid) // if(DoAnim) gg() LearnOFF() // start with no learning