TITLE Inactivating HVA L-type calcium channel for nucleus accumbens neuron : see comments at end of file UNITS { (mV) = (millivolt) (mA) = (milliamp) (S) = (siemens) (molar) = (1/liter) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } NEURON { SUFFIX caL USEION cal READ cali, calo WRITE ical VALENCE 2 RANGE pbar, ical, mshift, hshift } PARAMETER { pbar = 6.7e-6 (cm/s) : vh = -100 mV, 120 ms pulse to 0 mV mvhalf = -8.9 (mV) : Churchill 1998, fig 5 mslope = -6.7 (mV) : Churchill 1998, fig 5 mshift = 0 (mV) vm = -8.124 (mV) : Kasai 1992, fig 15 k = 9.005 (mV) : Kasai 1992, fig 15 kpr = 31.4 (mV) : Kasai 1992, fig 15 c = 0.0398 (/ms-mV) : Kasai 1992, fig 15 cpr = 0.99 (/ms) : Kasai 1992, fig 15 hvhalf = -13.4 (mV) : Bell 2001, fig 2 (HEK) hslope = 11.9 (mV) : Bell 2001, fig 2 htau = 44.3 (ms) : Bell 2001, pg 819 hshift = 0 (mV) a = 0.17 : Churchill 1998 qfact = 3 : both m&h recorded at 22 C } ASSIGNED { v (mV) ical (mA/cm2) ecal (mV) celsius (degC) cali (mM) calo (mM) minf hinf mtau (ms) } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp ical = ghk(v,cali,calo) * pbar * m * m * (a*h + (1-a)) : Kasai 92, Brown 93 } INITIAL { settables(v) m = minf h = hinf } DERIVATIVE states { settables(v) m' = (minf - m) / (mtau/qfact) h' = (hinf - h) / (htau/qfact) } PROCEDURE settables( v (mV) ) { LOCAL malpha, mbeta TABLE minf, hinf, mtau DEPEND mshift, hshift FROM -100 TO 100 WITH 201 minf = 1 / ( 1 + exp( (v-mvhalf-mshift) / mslope) ) hinf = 1 / ( 1 + exp( (v-hvhalf-hshift) / hslope) ) : to match hinf data from Bell 2001, fig 2 malpha = c * (v-vm) / ( exp((v-vm)/k) - 1 ) mbeta = cpr * exp(v/kpr) : Kasai 1992, fig 15 mtau = 1 / (malpha + mbeta) } :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: : ghk() borrowed from cachan.mod share file in Neuron FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) { LOCAL z, eci, eco z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15)) eco = co*efun(z) eci = ci*efun(-z) :high cao charge moves inward :negative potential charge moves inward ghk = (.001)*2*FARADAY*(eci - eco) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } COMMENT Brown AM, Schwindt PC, Crill WE (1993) Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. J Neurophysiol 70:1530-1543. Churchill D, Macvicar BA (1998) Biophysical and pharmacological characterization of voltage-dependent Ca2+ channels in neurons isolated from rat nucleus accumbens. J Neurophysiol 79:635-647. Kasai H, Neher E (1992) Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line. J Physiol 448:161-188. Bell DC, Butcher AJ, Berrow NS, Page KM, Brust PF, Nesterova A, Stauderman KA, Seabrook GR, Nurnberg B, Dolphin AC (2001) Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha(1D), Ca(V)1.3) voltage-dependent calcium currents. J Neurophysiol 85:816-827. - uses HEK cells Koch, C., and Segev, I., eds. (1998). Methods in Neuronal Modeling: From Ions to Networks, 2 edn (Cambridge, MA, MIT Press). Hille, B. (1992). Ionic Channels of Excitable Membranes, 2 edn (Sunderland, MA, Sinauer Associates Inc.). The standard HH model uses a linear approximation to the driving force for an ion: (Vm - ez). This is ok for na and k, but not ca - calcium rectifies at high potentials because 1. internal and external concentrations of ca are so different, making outward current flow much more difficult than inward 2. calcium is divalent so rectification is more sudden than for na and k. (Hille 1992, pg 107) Accordingly, we need to replace the HH formulation with the GHK model, which accounts for this phenomenon. The GHK equation is eq 6.6 in Koch 1998, pg 217 - it expresses Ica in terms of Ca channel permeability (Perm,ca) times a mess. The mess can be circumvented using the ghk function below, which is included in the Neuron share files. Perm,ca can be expressed in an HH-like fashion as Perm,ca = pcabar * mca * mca (or however many m's and h's) where pcabar has dimensions of permeability but can be thought of as max conductance (Koch says it should be about 10^7 times smaller than the HH gbar - dont know) and mca is analagous to m (check out Koch 1998 pg 144) Calcium current can then be modeled as ica = pcabar * mca * mca * ghk() Jason Moyer 2004 - jtmoyer@seas.upenn.edu ENDCOMMENT