:Interneuron Cells to Pyramidal Cells GABA with local Ca2+ pool and read public soma Ca2+ pool :short term facillitation :Created by D. Kim 2012 NEURON { POINT_PROCESS interV2pyrV_STFD USEION ca READ eca,ica NONSPECIFIC_CURRENT igaba RANGE initW RANGE Cdur_gaba, AlphaTmax_gaba, Beta_gaba, Erev_gaba, gbar_gaba, W, on_gaba, g_gaba RANGE eca, tauCa, Icatotal RANGE ICag, P0g, fCag RANGE Cainf, pooldiam, z RANGE lambda1, lambda2, threshold1, threshold2 RANGE fmax, fmin, Wmax, Wmin, maxChange, normW, scaleW, srcid, destid RANGE pregid,postgid, thr_rp RANGE F, f, tauF, D1, d1, tauD1, D2, d2, tauD2 RANGE facfactor } UNITS { (mV) = (millivolt) (nA) = (nanoamp) (uS) = (microsiemens) FARADAY = 96485 (coul) pi = 3.141592 (1) } PARAMETER { srcid = -1 (1) destid = -1 (1) Cdur_gaba = 0.7254 (ms) AlphaTmax_gaba = 7.2609 (/ms) Beta_gaba = 0.2667 (/ms) Erev_gaba = -75 (mV) gbar_gaba = 0.6e-3 (uS) Cainf = 50e-6 (mM) pooldiam = 1.8172 (micrometer) z = 2 k = 0.01 tauCa = 50 (ms) P0g = .01 fCag = .024 lambda1 = 2.5 : 2 : 1 lambda2 = 0.01 : .02 threshold1 = 0.47 : 0.45 : 0.4 : 0.75: 1.3 : 0.55 (uM) threshold2 = 0.52 : 0.5 : 0.45 : 0.8 : 1.35 : 0.70 (uM) :GABA Weight initW = 4.5 : : : 3 : 2.5 : 5 fmax = 4 : 3 : 3 fmin = .8 GAPstart1 = 96000 GAPstop1 = 196000 thr_rp = 1 : .7 facfactor = 1 : the (1) is needed for the range limits to be effective f = 0 (1) < 0, 1e9 > : 1.3 (1) < 0, 1e9 > : facilitation tauF = 20 (ms) < 1e-9, 1e9 > d1 = 0.95 (1) < 0, 1 > : fast depression tauD1 = 40 (ms) < 1e-9, 1e9 > d2 = 0.9 (1) < 0, 1 > : slow depression tauD2 = 70 (ms) < 1e-9, 1e9 > } ASSIGNED { v (mV) eca (mV) ica (nA) igaba (nA) g_gaba (uS) on_gaba W t0 (ms) ICan (mA) ICag (mA) Afactor (mM/ms/nA) Icatotal (mA) dW_gaba Wmax Wmin maxChange normW scaleW pregid postgid rp tsyn fa F D1 D2 } STATE { r_nmda r_gaba capoolcon } INITIAL { on_gaba = 0 r_gaba = 0 W = initW t0 = -1 Wmax = fmax*initW Wmin = fmin*initW maxChange = (Wmax-Wmin)/10 dW_gaba = 0 capoolcon = Cainf Afactor = 1/(z*FARADAY*4/3*pi*(pooldiam/2)^3)*(1e6) fa =0 F = 1 D1 = 1 D2 = 1 } BREAKPOINT { SOLVE release METHOD cnexp } DERIVATIVE release { if (t0>0) { if (rp < thr_rp) { if (t-t0 < Cdur_gaba) { on_gaba = 1 } else { on_gaba = 0 } } else { on_gaba = 0 } } if (t0>0) { if (rp < thr_rp) { if (t-t0 < Cdur_gaba) { on_gaba = 1 } else { on_gaba = 0 } } else { on_gaba = 0 } } r_gaba' = AlphaTmax_gaba*on_gaba*(1-r_gaba)-Beta_gaba*r_gaba dW_gaba = eta(capoolcon)*(lambda1*omega(capoolcon, threshold1, threshold2)-lambda2*GAP1(GAPstart1, GAPstop1)*W)*dt : Limit for extreme large weight changes if (fabs(dW_gaba) > maxChange) { if (dW_gaba < 0) { dW_gaba = -1*maxChange } else { dW_gaba = maxChange } } :Normalize the weight change normW = (W-Wmin)/(Wmax-Wmin) if (dW_gaba < 0) { scaleW = sqrt(fabs(normW)) } else { scaleW = sqrt(fabs(1.0-normW)) } W = W + dW_gaba*scaleW :Weight value limits if (W > Wmax) { W = Wmax } else if (W < Wmin) { W = Wmin } g_gaba = gbar_gaba*r_gaba*facfactor igaba = W*g_gaba*(v - Erev_gaba) ICag = P0g*g_gaba*(v - eca) Icatotal = ICag + k*ica*4*pi*((15/2)^2)*(0.01) : icag+k*ica*Area of soma*unit change capoolcon'= -fCag*Afactor*Icatotal + (Cainf-capoolcon)/tauCa } NET_RECEIVE(dummy_weight) { t0 = t rp = unirand() :F = 1 + (F-1)* exp(-(t - tsyn)/tauF) D1 = 1 - (1-D1)*exp(-(t - tsyn)/tauD1) D2 = 1 - (1-D2)*exp(-(t - tsyn)/tauD2) :printf("%g\t%g\t%g\t%g\t%g\t%g\n", t, t-tsyn, F, D1, D2, facfactor) :printf("%g\t%g\t%g\t%g\n", F, D1, D2, facfactor) tsyn = t facfactor = F * D1 * D2 ::F = F+f :F * f if (F > 3) { F=3 } if (facfactor < 0.7) { facfactor=0.7 } D1 = D1 * d1 D2 = D2 * d2 :printf("\t%g\t%g\t%g\n", F, D1, D2) } :::::::::::: FUNCTIONs and PROCEDUREs :::::::::::: FUNCTION eta(Cani (mM)) { LOCAL taulearn, P1, P2, P4, Cacon P1 = 0.1 P2 = P1*1e-4 P4 = 1 Cacon = Cani*1e3 taulearn = P1/(P2+Cacon*Cacon*Cacon)+P4 eta = 1/taulearn*0.001 } FUNCTION omega(Cani (mM), threshold1 (uM), threshold2 (uM)) { LOCAL r, mid, Cacon Cacon = Cani*1e3 r = (threshold2-threshold1)/2 mid = (threshold1+threshold2)/2 if (Cacon <= threshold1) { omega = 0} else if (Cacon >= threshold2) { omega = 1/(1+50*exp(-50*(Cacon-threshold2)))} else {omega = -sqrt(r*r-(Cacon-mid)*(Cacon-mid))} } FUNCTION GAP1(GAPstart1 (ms), GAPstop1 (ms)) { LOCAL s if (t <= GAPstart1) { GAP1 = 1} else if (t >= GAPstart1 && t <= GAPstop1) {GAP1 = 1} : During the Gap, apply lamda2*2 else { GAP1 = 1} } FUNCTION unirand() { : uniform random numbers between 0 and 1 unirand = scop_random() }