TITLE Ca R-type channel with high threshold for activation : HVA calcium channels are inserted in the spine head : Activation and inactivation parameters taken from : Foehring RC, Mermelstein PG, Song W, Ulrich S and Surmeier DJ : Unique properities of R-type calcium currents in neucortical and neostriatal neurons : J Neurophysiol (2000) 84: 2225 - 2236 : : written by Lei Tian on 04/11/06 : As used by Holbro et al PNAS 107:15975-15980, 2010 (BPG) : Parameters made available through hoc (BPG) NEURON { SUFFIX carF USEION ca WRITE ica RANGE gcabar, m, h, g, p, eca RANGE inf, fac, vha, ka, ta, vhi, ki, ti RANGE irtype } UNITS { (mA) = (milliamp) (mV) = (millivolt) } INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} PARAMETER { : parameters that can be entered when function is called in cell-setup v (mV) celsius = 30 (degC) dt (ms) gcabar = 0.351 (mho/cm2) : initialized conductance eca = 10 (mV) : Ca++ reversal potential was choosen to best fit the GHK between -40 and -10 mV vha = -14 (mV) : half activation voltage (BPG) ka = -6.7 (1) : activation slope (BPG) ta = 3.6 (ms) : activation time constant (BPG) vhi = -65 (mV) : half inactivation voltage (BPG) ki = 11.8 (1) : inactivation slope (BPG) ti = 200 (ms) : inactivation time constant (BPG) } STATE { m h } ASSIGNED { ica (mA/cm2) inf[2] fac[2] tau[2] irtype g :R_type channel total conductance p } BREAKPOINT { SOLVE states METHOD derivimplicit ica = gcabar*m*m*m*h*(v - eca) irtype= -ica } INITIAL { m = 0 : initial activation parameter value h = 0.5 : initial inactivation parameter value states() ica = gcabar*m*m*m*h*(v - eca) : initial Ca++ current value irtype=-ica : the ca current through R_type channel } DERIVATIVE states { mhn(v*1(/mV)) m' = (inf[0] - m) / tau[0] h' = (inf[1] - h) / tau[1] } FUNCTION varss(v, i) { if (i==0) { varss = 1 / (1 + exp((v-vha)/(ka))) : Ca activation } else if (i==1) { varss = 1/ (1 + exp((v-vhi)/(ki))) : Ca inactivation } } FUNCTION vartau(v, i) { if (i==0) { vartau = ta : activation variable time constant } else if (i==1) { vartau = ti : inactivation variable time constant } } PROCEDURE mhn(v) {LOCAL a, b :rest = -70 : TABLE inf, fac DEPEND dt, celsius FROM -100 TO 100 WITH 200 FROM i=0 TO 1 { tau[i] = vartau(v,i) inf[i] = varss(v,i) : fac[i] = (1 - exp(-dt/tau[i])) } }