% load data. This is the datafile you specify when calling adex_network2column.py % sample load command to execute before running this script: %load D:/vbox/test_adex.mat % % Included in this .mat file are outputs of all neurons. Variable names L3/4/5 refer to layer 3/4/5. % APs = action potentials, lfp = local field potential (sum of all E/IPSPs). final digit 1/2 refers to column 1/2. % FS = fast spiking inhibitory neuron, RS = regular spiking excitatory neuron, BU = bursting excitatory neuron % spiking data were not used in this paper, but are exported for completeness. % sampling rate srate = 1000/mean(diff(lfptimes)); %% plot LFP power % average all layers together lfpdata = ( mean(L3_RS_lfp1,1)+mean(L4_BU_lfp1,1)+mean(L4_RS_lfp1,1)+mean(L5_BU_lfp1,1)+mean(L5_RS_lfp1,1) ) ./ 5; % compute FFT lfp_power = abs(fft(lfpdata))*2; % frequencies for power spectra hz = linspace(0,srate,size(lfpdata,2)/2+1); % plot figure(1), clf plot(hz,lfp_power(1:length(hz))) set(gca,'xlim',[1 100]) xlabel('Frequency (Hz)'), ylabel('Amplitude') title('LFP power spectrum for one trial') % Note that the power spectrum here is noisier than in the figure in the paper. % This is because the paper averages over 100 trials (where each trial has the same % parameters but different random seeds for noise, connectivity, synapse strengths, etc.) %% Plotting spiking data % *APs variables contain neuron number and spike time. For example: figure plot(L3_RS_APs2(:,2),L3_RS_APs2(:,1),'k.','markersize',2) xlabel('Time in seconds'), ylabel('Neuron number') title('Action potential timing in L3, column 2')