TITLE High threshold calcium current : : Ca++ current, L type channels, responsible for calcium spikes : Differential equations : : Model of Huguenard & McCormick, J Neurophysiol, 1992 : Formalism of Goldman-Hodgkin-Katz : : Kinetic functions were fitted from data of hippocampal pyr cells : (Kay & Wong, J. Physiol. 392: 603, 1987) : : Written by Alain Destexhe, Salk Institute, Sept 18, 1992 : Modified by Zhu et al, 1999: Neuroscience 91, 1445-1460 (1999). : Modified by Geir Halnes, Norwegian University of Life Sciences, June 2011 INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX ical USEION Ca READ Cai, Cao WRITE iCa VALENCE 2 RANGE pcabar, g GLOBAL m_inf, taum, sh1, sh2 } UNITS { (mA) = (milliamp) (mV) = (millivolt) (molar) = (1/liter) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) celsius = 36 (degC) eCa = 120 (mV) Cai = .00005 (mM) : initial [Ca]i = 50 nM Cao = 2 (mM) : [Ca]o = 2 mM pcabar = 9e-4 (mho/cm2) sh1 = -17 : Modified (-10 in Zhu et al. 99a) sh2 = -7 : Modified (0 in Zhu et al. 99a) } STATE { m } INITIAL { tadj = 3 ^ ((celsius-21.0)/10) evaluate_fct(v) m = m_inf } ASSIGNED { iCa (mA/cm2) g (mho/cm2) m_inf taum (ms) tadj } BREAKPOINT { SOLVE states METHOD cnexp g = pcabar * m * m iCa = g * ghk(v, Cai, Cao) } DERIVATIVE states { evaluate_fct(v) m' = (m_inf - m) / taum } UNITSOFF PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b : activation kinetics of Kay-Wong were at 20-22 deg. C : transformation to 36 deg assuming Q10=3 a = 1.6 / (1 + exp(-0.072*(v+sh1+5)) ) b = 0.02 * (v+sh2-1.31) / ( exp((v+sh2-1.31)/5.36) - 1) taum = 1.0 / (a + b) / tadj m_inf = a / (a + b) } FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) { LOCAL z, eci, eco z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15)) eco = co*efun(z) eci = ci*efun(-z) :high co charge moves inward :negative potential charge moves inward ghk = (.001)*2*FARADAY*(eci - eco) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } UNITSON