/* Created by Language version: 6.2.0 */ /* NOT VECTORIZED */ #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define _threadargscomma_ /**/ #define _threadargs_ /**/ #define _threadargsprotocomma_ /**/ #define _threadargsproto_ /**/ /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); static double *_p; static Datum *_ppvar; #define t nrn_threads->_t #define dt nrn_threads->_dt #define gbar _p[0] #define gna _p[1] #define minf _p[2] #define hinf _p[3] #define mtau _p[4] #define htau _p[5] #define m _p[6] #define h _p[7] #define ina _p[8] #define ena _p[9] #define Dm _p[10] #define Dh _p[11] #define _g _p[12] #define _ion_ena *_ppvar[0]._pval #define _ion_ina *_ppvar[1]._pval #define _ion_dinadv *_ppvar[2]._pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; /* external NEURON variables */ extern double celsius; /* declaration of user functions */ static void _hoc_myexp(void); static void _hoc_rates(void); static void _hoc_states(void); static void _hoc_trap0(void); static void _hoc_trates(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _p = _prop->param; _ppvar = _prop->dparam; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_na", _hoc_setdata, "myexp_na", _hoc_myexp, "rates_na", _hoc_rates, "states_na", _hoc_states, "trap0_na", _hoc_trap0, "trates_na", _hoc_trates, 0, 0 }; #define myexp myexp_na #define trap0 trap0_na extern double myexp( double ); extern double trap0( double , double , double , double ); /* declare global and static user variables */ #define Rg Rg_na double Rg = 0.0091; #define Rd Rd_na double Rd = 0.024; #define Rb Rb_na double Rb = 0.124; #define Ra Ra_na double Ra = 0.182; #define q10 q10_na double q10 = 2.3; #define qinf qinf_na double qinf = 6.2; #define qi qi_na double qi = 5; #define qa qa_na double qa = 9; #define tadj tadj_na double tadj = 0; #define temp temp_na double temp = 23; #define thinf thinf_na double thinf = -65; #define thi2 thi2_na double thi2 = -75; #define thi1 thi1_na double thi1 = -50; #define tha tha_na double tha = -35; #define usetable usetable_na double usetable = 1; #define vshift vshift_na double vshift = -10; #define vmax vmax_na double vmax = 100; #define vmin vmin_na double vmin = -120; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { "usetable_na", 0, 1, 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "vshift_na", "mV", "tha_na", "mV", "qa_na", "mV", "Ra_na", "/ms", "Rb_na", "/ms", "thi1_na", "mV", "thi2_na", "mV", "qi_na", "mV", "thinf_na", "mV", "qinf_na", "mV", "Rg_na", "/ms", "Rd_na", "/ms", "temp_na", "degC", "vmin_na", "mV", "vmax_na", "mV", "gbar_na", "pS/um2", "gna_na", "pS/um2", "mtau_na", "ms", "htau_na", "ms", 0,0 }; static double delta_t = 1; static double h0 = 0; static double m0 = 0; static double v = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "vshift_na", &vshift_na, "tha_na", &tha_na, "qa_na", &qa_na, "Ra_na", &Ra_na, "Rb_na", &Rb_na, "thi1_na", &thi1_na, "thi2_na", &thi2_na, "qi_na", &qi_na, "thinf_na", &thinf_na, "qinf_na", &qinf_na, "Rg_na", &Rg_na, "Rd_na", &Rd_na, "temp_na", &temp_na, "q10_na", &q10_na, "vmin_na", &vmin_na, "vmax_na", &vmax_na, "tadj_na", &tadj_na, "usetable_na", &usetable_na, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "6.2.0", "na", "gbar_na", 0, "gna_na", "minf_na", "hinf_na", "mtau_na", "htau_na", 0, "m_na", "h_na", 0, 0}; static Symbol* _na_sym; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 13, _prop); /*initialize range parameters*/ gbar = 1000; _prop->param = _p; _prop->param_size = 13; _ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ prop_ion = need_memb(_na_sym); nrn_promote(prop_ion, 0, 1); _ppvar[0]._pval = &prop_ion->param[0]; /* ena */ _ppvar[1]._pval = &prop_ion->param[3]; /* ina */ _ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */ } static void _initlists(); static void _update_ion_pointer(Datum*); extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*f)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _naz_nature_reg() { int _vectorized = 0; _initlists(); ion_reg("na", -10000.); _na_sym = hoc_lookup("na_ion"); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); _nrn_thread_reg(_mechtype, 2, _update_ion_pointer); hoc_register_dparam_size(_mechtype, 3); hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 na /Users/cweaver/research/Neuron/Coskren/MorphologyPaperTwo/Scripts/NeuronMechanisms/x86_64/naz_nature.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static double _zmexp , _zhexp ; static double *_t_minf; static double *_t__zmexp; static double *_t_hinf; static double *_t__zhexp; static int _reset; static char *modelname = ""; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int _f_trates(double); static int rates(double); static int states(); static int trates(double); static void _n_trates(double); static int states ( ) { trates ( _threadargscomma_ v + vshift ) ; m = m + _zmexp * ( minf - m ) ; h = h + _zhexp * ( hinf - h ) ; /*VERBATIM*/ return 0; return 0; } static void _hoc_states(void) { double _r; _r = 1.; states ( ); hoc_retpushx(_r); } static double _mfac_trates, _tmin_trates; static void _check_trates(); static void _check_trates() { static int _maktable=1; int _i, _j, _ix = 0; double _xi, _tmax; static double _sav_dt; static double _sav_celsius; static double _sav_temp; static double _sav_Ra; static double _sav_Rb; static double _sav_Rd; static double _sav_Rg; static double _sav_tha; static double _sav_thi1; static double _sav_thi2; static double _sav_qa; static double _sav_qi; static double _sav_qinf; if (!usetable) {return;} if (_sav_dt != dt) { _maktable = 1;} if (_sav_celsius != celsius) { _maktable = 1;} if (_sav_temp != temp) { _maktable = 1;} if (_sav_Ra != Ra) { _maktable = 1;} if (_sav_Rb != Rb) { _maktable = 1;} if (_sav_Rd != Rd) { _maktable = 1;} if (_sav_Rg != Rg) { _maktable = 1;} if (_sav_tha != tha) { _maktable = 1;} if (_sav_thi1 != thi1) { _maktable = 1;} if (_sav_thi2 != thi2) { _maktable = 1;} if (_sav_qa != qa) { _maktable = 1;} if (_sav_qi != qi) { _maktable = 1;} if (_sav_qinf != qinf) { _maktable = 1;} if (_maktable) { double _x, _dx; _maktable=0; _tmin_trates = vmin ; _tmax = vmax ; _dx = (_tmax - _tmin_trates)/199.; _mfac_trates = 1./_dx; for (_i=0, _x=_tmin_trates; _i < 200; _x += _dx, _i++) { _f_trates(_x); _t_minf[_i] = minf; _t__zmexp[_i] = _zmexp; _t_hinf[_i] = hinf; _t__zhexp[_i] = _zhexp; } _sav_dt = dt; _sav_celsius = celsius; _sav_temp = temp; _sav_Ra = Ra; _sav_Rb = Rb; _sav_Rd = Rd; _sav_Rg = Rg; _sav_tha = tha; _sav_thi1 = thi1; _sav_thi2 = thi2; _sav_qa = qa; _sav_qi = qi; _sav_qinf = qinf; } } static int trates(double _lv){ _check_trates(); _n_trates(_lv); return 0; } static void _n_trates(double _lv){ int _i, _j; double _xi, _theta; if (!usetable) { _f_trates(_lv); return; } _xi = _mfac_trates * (_lv - _tmin_trates); _i = (int) _xi; if (_xi <= 0.) { minf = _t_minf[0]; _zmexp = _t__zmexp[0]; hinf = _t_hinf[0]; _zhexp = _t__zhexp[0]; return; } if (_i >= 199) { minf = _t_minf[199]; _zmexp = _t__zmexp[199]; hinf = _t_hinf[199]; _zhexp = _t__zhexp[199]; return; } _theta = _xi - (double)_i; minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]); _zmexp = _t__zmexp[_i] + _theta*(_t__zmexp[_i+1] - _t__zmexp[_i]); hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]); _zhexp = _t__zhexp[_i] + _theta*(_t__zhexp[_i+1] - _t__zhexp[_i]); } static int _f_trates ( double _lv ) { double _ltinc ; rates ( _threadargscomma_ _lv ) ; tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ; _ltinc = - dt * tadj ; _zmexp = 1.0 - myexp ( _threadargscomma_ _ltinc / mtau ) ; _zhexp = 1.0 - myexp ( _threadargscomma_ _ltinc / htau ) ; return 0; } static void _hoc_trates(void) { double _r; _r = 1.; trates ( *getarg(1) ); hoc_retpushx(_r); } static int rates ( double _lvm ) { double _la , _lb ; _la = trap0 ( _threadargscomma_ _lvm , tha , Ra , qa ) ; _lb = trap0 ( _threadargscomma_ - _lvm , - tha , Rb , qa ) ; mtau = 1.0 / ( _la + _lb ) ; minf = _la * mtau ; _la = trap0 ( _threadargscomma_ _lvm , thi1 , Rd , qi ) ; _lb = trap0 ( _threadargscomma_ - _lvm , - thi2 , Rg , qi ) ; htau = 1.0 / ( _la + _lb ) ; hinf = 1.0 / ( 1.0 + myexp ( _threadargscomma_ ( _lvm - thinf ) / qinf ) ) ; return 0; } static void _hoc_rates(void) { double _r; _r = 1.; rates ( *getarg(1) ); hoc_retpushx(_r); } double myexp ( double _lx ) { double _lmyexp; if ( _lx < - 100.0 ) { _lmyexp = 0.0 ; } else { _lmyexp = exp ( _lx ) ; } return _lmyexp; } static void _hoc_myexp(void) { double _r; _r = myexp ( *getarg(1) ); hoc_retpushx(_r); } double trap0 ( double _lv , double _lth , double _la , double _lq ) { double _ltrap0; if ( fabs ( _lv / _lth ) > 1e-6 ) { _ltrap0 = _la * ( _lv - _lth ) / ( 1.0 - myexp ( _threadargscomma_ - ( _lv - _lth ) / _lq ) ) ; } else { _ltrap0 = _la * _lq ; } return _ltrap0; } static void _hoc_trap0(void) { double _r; _r = trap0 ( *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) ); hoc_retpushx(_r); } static int _ode_count(int _type){ hoc_execerror("na", "cannot be used with CVODE"); return 0;} extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int); static void _update_ion_pointer(Datum* _ppvar) { nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0); nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3); nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4); } static void initmodel() { int _i; double _save;_ninits++; _save = t; t = 0.0; { h = h0; m = m0; { trates ( _threadargscomma_ v + vshift ) ; m = minf ; h = hinf ; } _sav_indep = t; t = _save; } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; ena = _ion_ena; initmodel(); }} static double _nrn_current(double _v){double _current=0.;v=_v;{ { gna = tadj * gbar * m * m * m * h ; ina = ( 1e-4 ) * gna * ( v - ena ) ; } _current += ina; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } ena = _ion_ena; _g = _nrn_current(_v + .001); { double _dina; _dina = ina; _rhs = _nrn_current(_v); _ion_dinadv += (_dina - ina)/.001 ; } _g = (_g - _rhs)/.001; _ion_ina += ina ; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } }} static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } }} static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){ double _break, _save; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _break = t + .5*dt; _save = t; v=_v; { ena = _ion_ena; { { for (; t < _break; t += dt) { error = states(); if(error){fprintf(stderr,"at line 90 in file naz_nature.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);} }} t = _save; } }} } static void terminal(){} static void _initlists() { int _i; static int _first = 1; if (!_first) return; _t_minf = makevector(200*sizeof(double)); _t__zmexp = makevector(200*sizeof(double)); _t_hinf = makevector(200*sizeof(double)); _t__zhexp = makevector(200*sizeof(double)); _first = 0; }