/****** aged neuron Aug3IR2f is the one that Aniruddha spent so much time fitting. We don't want to fit passive parameters of each neuron anew to this model. Instead, scale the Rm values of this model relative to the sizes of the optimized values in the HH passive parameter optimizations. Christina Weaver, Aug 30 2014 ******/ func scaleRm_vsAug3f() { if( $1 == 6 ) { // dec15IR2e RMfac = 0.397317032 } if( $1 == 7 ) { // jun7d RMfac = 1.072474104 } if( $1 == 8 ) { // may3IR2d RMfac = 0.575547631 } if( $1 == 9 ) { // may3IR2h RMfac = 0.315299711 } if( $1 == 10 ) { // may3IR2i RMfac = 0.44686704 } if( $1 == 11 ) { // may3IR2t RMfac = 0.404313126 } if( $1 == 0 ) { // aug3IR2a RMfac = 0.72718628 } if( $1 == 1 ) { // aug3c RMfac = 0.67030056 } if( $1 == 2 ) { // aug3IR2e RMfac = 0.849040584 } if( $1 == 3 ) { // aug3IR2f RMfac = 1 } if( $1 == 4 ) { // aug3IR2g RMfac = 0.698930209 } if( $1 == 5 ) { // feb27IR2n RMfac = 1.23158431 } return RMfac } func scaleCm_vsAug3f() { if( $1 == 6 ) { // dec15IR2e CMfac = 1.842065654 } if( $1 == 7 ) { // jun7d CMfac = 2.743216805 } if( $1 == 8 ) { // may3IR2d CMfac = 1.737475659 } if( $1 == 9 ) { // may3IR2h CMfac = 2.133695652 } if( $1 == 10 ) { // may3IR2i CMfac = 3.74588612 } if( $1 == 11 ) { // may3IR2t CMfac = 2.876590946 } if( $1 == 0 ) { // aug3IR2a CMfac = 0.754346912 } if( $1 == 1 ) { // aug3c CMfac = 1.623757851 } if( $1 == 2 ) { // aug3IR2e CMfac = 0.94736087 } if( $1 == 3 ) { // aug3IR2f CMfac = 1 } if( $1 == 4 ) { // aug3IR2g CMfac = 0.96420649 } if( $1 == 5 ) { // feb27IR2n CMfac = 1.282665046 } return CMfac } /********************************************* scaling Cm as suggested by the customized HH model parameters, then applying to the aug3f Cm = .833333 that Aniruddha determined, leads to some young neurons with high firing. Plus it seems unlikely that the Cm value would vary by THAT much in young vs. aged neurons without Jennie seeing it in the time constant. So readjust the parameter: Reduce the customized scale factor for young neurons by 25%. Note that aged neurons are scaled by the original 'customized passive' scale factor. *********************************************/ func scaleCmYg75_vsAug3f() { if( $1 == 6 ) { // dec15IR2e CMfac = 0.921032827 } if( $1 == 7 ) { // jun7d CMfac = 1.371608403 } if( $1 == 8 ) { // may3IR2d CMfac = 0.86873783 } if( $1 == 9 ) { // may3IR2h CMfac = 1.066847826 } if( $1 == 10 ) { // may3IR2i CMfac = 1.87294306 } if( $1 == 11 ) { // may3IR2t CMfac = 1.438295473 } // aged neurons: scale by the originally calculated amount if( $1 == 0 ) { // aug3IR2a CMfac = 0.754346912 } if( $1 == 1 ) { // aug3c CMfac = 1.623757851 } if( $1 == 2 ) { // aug3IR2e CMfac = 0.94736087 } if( $1 == 3 ) { // aug3IR2f CMfac = 1 } if( $1 == 4 ) { // aug3IR2g CMfac = 0.96420649 } if( $1 == 5 ) { // feb27IR2n CMfac = 1.282665046 } return CMfac }