:Comment : LVA ca channel. Note: mtau is an approximation from the plots :Reference : : Avery and Johnston 1996, tau from Randall 1997 :Comment: shifted by -10 mv to correct for junction potential :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21 NEURON { SUFFIX Ca_LVAst USEION ca READ eca WRITE ica RANGE gCa_LVAstbar, gCa_LVAst, ica, offma, offmt, offha, offht, sloma, slomt, sloha, sloht, taummin, taumdiff, tauhmin, tauhdiff } UNITS { (S) = (siemens) (mV) = (millivolt) (mA) = (milliamp) } PARAMETER { gCa_LVAstbar = 0.00001 (S/cm2) offma = -40.0 (mV) offmt = -35.0 (mV) offha = -90.0 (mV) offht = -50.0 (mV) sloma = 6.0 (mV) slomt = 5.0 (mV) sloha = 6.4 (mV) sloht = 7.0 (mV) taummin = 5.0 (ms) taumdiff = 20.0 (ms) tauhmin = 20.0 (ms) tauhdiff = 50.0 (ms) } ASSIGNED { v (mV) eca (mV) ica (mA/cm2) gCa_LVAst (S/cm2) mInf mTau hInf hTau } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp gCa_LVAst = gCa_LVAstbar*m*m*h ica = gCa_LVAst*(v-eca) } DERIVATIVE states { rates() m' = (mInf-m)/mTau h' = (hInf-h)/hTau } INITIAL{ rates() m = mInf h = hInf } PROCEDURE rates(){ LOCAL qt qt = 2.3^((34-21)/10) UNITSOFF mInf = 1.0000/(1+ exp((offma-v)/sloma)) mTau = (taummin + taumdiff/(1+exp(-(offmt-v)/slomt)))/qt hInf = 1.0000/(1+ exp(-(offha-v)/sloha)) hTau = (tauhmin + tauhdiff/(1+exp(-(offht-v)/sloht)))/qt UNITSON }