# drawfig5 # A script for plotting the threshold conductances for a second distal stimulus # # The input code for the hoc-interface is based on BAC_firing.hoc by Etay Hay (2011) # # Tuomo Maki-Marttunen, Jan 2015 # (CC BY) from neuron import h import matplotlib matplotlib.use('Agg') from pylab import * import mytools import pickle useLatex = False if useLatex: ylabel_g = '$g_{\mathrm{th}}$ ($\upmu$S)' ylabel_cg = 'threshold $c_g$' else: ylabel_g = 'g_th (uS)' ylabel_cg = 'threshold c_g' v0 = -80 ca0 = 0.0001 proximalpoint = 400 distalpoint = 620 fs = 8 xs = range(700,1150,50); tstop = 11000.0 currCoeff = 1.1 # use the threshold current g_th*1.1 for inducing the first spike, and g_th*1.1*c for the second spike, where c saved in thresholddistalamp.sav ITERS = 20 PPIdts = range(0,500,2) # use a fine temporal resolution maxLens = [1300,1185] barxs = [1,2,3,-1,-2,0] cols = ['#444444','#012345','#aa00aa','#bbaa00','#ee6600','#ff0000', '#009999','#772277','#00cc00'] col_control = '#2222ff' coeffCoeffs = [[0.25,0],[0.125,0],[0.5,0],[0.5,1.0/3],[0.5,2.0/3],[0.5,1.0],[-0.25,0],[-0.125,0],[-0.5,0]] lw = 0.6 fs = 10 import mutation_stuff MT = mutation_stuff.getMT() geneNames = mutation_stuff.getgenenames() defVals = mutation_stuff.getdefvals() keyList = defVals.keys() for idefval in range(0,len(keyList)): if type(defVals[keyList[idefval]]) is not list: defVals[keyList[idefval]] = [defVals[keyList[idefval]], defVals[keyList[idefval]]] #make the dictionary values [somatic, apical] updatedVars = ['somatic','apical','basal'] # the possible classes of segments that defVals may apply to whichDefVal = [0,1,0] # use the defVal[0] for somatic and basal segments and defVal[1] for apical segments unpicklefile = open('scalings.sav', 'r') unpickledlist = pickle.load(unpicklefile) unpicklefile.close() theseCoeffsAllAll = unpickledlist[0] unpicklefile = open('thresholddistalamp.sav', 'r') unpickledlist = pickle.load(unpicklefile) unpicklefile.close() gsAllAll = unpickledlist[1] gs_control = gsAllAll[0][0][1][0][5] unpicklefile = open('synlocs.sav', 'r') unpickledlist = pickle.load(unpicklefile) unpicklefile.close() Nsyns = unpickledlist[0] synlocsAll = unpickledlist[3] variants = [[0,1,0],[1,2,14],[3,0,1],[6,1,0],[8,0,0],[11,0,0]] f, axarr23 = plt.subplots(2, 3) axnew23 = [[0,0,0],[0,0,0]] for iy in range(0,2): for ix in range(0,3): axarr23[iy,ix].set_position([0.1+0.19*ix, 0.1+0.26*(1-iy), 0.19, 0.2]) axnew23[iy][ix] = f.add_axes([0.22+0.19*ix, 0.22+0.26*(1-iy), 0.06, 0.06],axisbg='w') axarr = [axarr23[0,0],axarr23[0,1],axarr23[0,2],axarr23[1,0],axarr23[1,1],axarr23[1,2]] axnew = [axnew23[0][0],axnew23[0][1],axnew23[0][2],axnew23[1][0],axnew23[1][1],axnew23[1][2]] for ivar in range(0,len(variants)): icell = 0 igene = variants[ivar][0] imut = variants[ivar][1] synlocs = synlocsAll[icell] theseCoeffs = theseCoeffsAllAll[icell][igene][imut] morphology_file = "morphologies/cell"+str(icell+1)+".asc" biophys_file = "models/L5PCbiophys3.hoc" template_file = "models/L5PCtemplate.hoc" h(""" load_file("stdlib.hoc") load_file("stdrun.hoc") objref cvode cvode = new CVode() cvode.active(1) load_file("import3d.hoc") objref L5PC load_file(\""""+biophys_file+"""\") load_file(\""""+template_file+"""\") L5PC = new L5PCtemplate(\""""+morphology_file+"""\") access L5PC.soma objref vsoma, sl, tvec, syns["""+str(2*Nsyns)+"""] vsoma = new Vector() tvec = new Vector() sl = new List() double siteVec[2] L5PC.soma cvode.record(&v(0.5),vsoma,tvec) """) #""" for istim in range(0,Nsyns): h(""" siteVec[0] = """+str(synlocs[istim][0])+""" siteVec[1] = """+str(synlocs[istim][1])+""" L5PC.apic[siteVec[0]] { syns["""+str(istim)+"""] = new AlphaSynapse(siteVec[1]) syns["""+str(istim)+"""].e = 0 syns["""+str(istim)+"""].tau = 5 syns["""+str(istim)+"""].onset = 10000 syns["""+str(istim+Nsyns)+"""] = new AlphaSynapse(siteVec[1]) syns["""+str(istim+Nsyns)+"""].e = 0 syns["""+str(istim+Nsyns)+"""].tau = 5 syns["""+str(istim+Nsyns)+"""].onset = 10000 } """) nVals = len(MT[igene][imut])*[0] thesemutvars = [] for imutvar in range(0,len(MT[igene][imut])): thesemutvars.append(MT[igene][imut][imutvar][0]) if type(MT[igene][imut][imutvar][1]) is int or type(MT[igene][imut][imutvar][1]) is float: MT[igene][imut][imutvar][1] = [MT[igene][imut][imutvar][1]] nVals[imutvar] = len(MT[igene][imut][imutvar][1]) cumprodnVals = cumprod(nVals) allmutvars = cumprodnVals[len(MT[igene][imut])-1]*[thesemutvars] allmutvals = [] for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]): allmutvals.append([0]*len(thesemutvars)) for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]): for imutvar in range(0,len(MT[igene][imut])): if imutvar==0: allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][iallmutval%nVals[imutvar]] else: allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][(iallmutval/cumprodnVals[imutvar-1])%nVals[imutvar]] iallmutval = variants[ivar][2] gs = gsAllAll[icell][igene][imut][iallmutval] iters = [0, 2, 5, 6, 8, -1] for iiter in range(0,len(iters)): iter = iters[iiter] if iter >= 0: thiscol = cols[iter] thisCoeff = coeffCoeffs[iter][0]*theseCoeffs[iallmutval] + coeffCoeffs[iter][1]*(1.0 - 0.5*theseCoeffs[iallmutval]) gsThisIter = gs[iiter] else: thiscol = col_control thisCoeff = 0 gsThisIter = gs_control if iter==5: # Disregard this one (the one corresponding to unscaled variant), but keep it in the list of iters as it was there also in thresholddistalamp.sav continue gCoeffsThisIter = [] mutText = "" for imutvar in range(0,len(MT[igene][imut])): if imutvar > 0 and imutvar%2==0: mutText = mutText+"\n" mutvars = allmutvars[iallmutval][imutvar] mutvals = allmutvals[iallmutval][imutvar] if type(mutvars) is str: mutvars = [mutvars] mutText = mutText + str(mutvars) + ": " for kmutvar in range(0,len(mutvars)): mutvar = mutvars[kmutvar] if mutvar.find('offm') > -1 or mutvar.find('offh') > -1 or mutvar.find('ehcn') > -1: newVal = [x+mutvals*thisCoeff for x in defVals[mutvar]] if mutvals >= 0 and kmutvar==0: mutText = mutText + "+" + str(mutvals) +" mV" elif kmutvar==0: mutText = mutText + str(mutvals) +" mV" else: newVal = [x*(mutvals**thisCoeff) for x in defVals[mutvar]] if kmutvar==0: mutText = mutText + "*" + str(mutvals) if kmutvar < len(mutvars)-1: mutText = mutText + ", " if mutvar.find('_Ih') > -1: updateThese = [1,1,1] elif mutvar.find('_Ca_HVA') > -1 or mutvar.find('_Ca_LVAst') > -1 or mutvar.find('_SKv3.1') > -1 or mutvar.find('_Ca_HVA') > -1 or mutvar.find('_SK_E2') > -1 or mutvar.find('_NaTa_t') > -1 or mutvar.find('_CaDynamics_E2') > -1: updateThese = [1,1,0] elif mutvar.find('_K_Pst') > -1 or mutvar.find('_K_Tst') > -1 or mutvar.find('_Nap_Et2') > -1: updateThese = [1,0,0] elif mutvar.find('_Im') > -1: updateThese = [0,1,0] else: print "Error: str=" + str(mutvar) updatedThese = [0,0,0] for iupdated in range(0,3): if updateThese[iupdated]: print """forsec L5PC."""+str(updatedVars[iupdated])+""" { """+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+""" }""" h("""forsec L5PC."""+str(updatedVars[iupdated])+""" { """+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+""" }""") print mutText thisCa = h.L5PC.soma[0].minCai_CaDynamics_E2 if iter==-1: filename = 'fig5_cs'+str(icell)+'_control.sav' else: filename = 'fig5_cs'+str(icell)+'_ivar'+str(ivar)+'_iter'+str(iter)+'.sav' try: # If the simulation has already been made, don't bother rerun it unpicklefile = open(filename, 'r') unpickledlist = pickle.load(unpicklefile) unpicklefile.close() PPIdts = unpickledlist[0] gCoeffsThisIter = unpickledlist[1] except: for iPPI in range(0,len(PPIdts)): PPIdt = PPIdts[iPPI] nextCoeffs = [0,10.0,5.0] hasSpiked = 0 for iterI in range(0,ITERS+2): for istim in range(0,Nsyns): h("syns["+str(istim)+"].gmax = "+str(gsThisIter*currCoeff)) h("syns["+str(istim+Nsyns)+"].gmax = "+str(gsThisIter*currCoeff*nextCoeffs[min(iterI,2)])) h("syns["+str(istim+Nsyns)+"].onset = "+str(10000+PPIdt)) h(""" tstop = """+str(tstop)+""" cai0_ca_ion = """+str(thisCa)+""" v_init = """+str(v0)+""" """) h.init() try: h.run() except RuntimeError: print "Too large I!" if iterI > 1: nextCoeffs = [nextCoeffs[0],nextCoeffs[2],0.5*(nextCoeffs[0]+nextCoeffs[2])] continue times=np.array(h.tvec) Vsoma=np.array(h.vsoma) nSpikes_total = len(mytools.spike_times(times,Vsoma,-35,-37.5)) print "nextCoeffs="+str(nextCoeffs)+", "+str(nSpikes_total)+" spikes" if iterI==0: nSpikes_normal = nSpikes_total hasSpiked = hasSpiked or (nSpikes_total > nSpikes_normal) if iterI > 0 and not hasSpiked: nextCoeffs = [nextCoeffs[1],2*nextCoeffs[1],1.5*nextCoeffs[1]] continue if iterI > 1 and nSpikes_total > nSpikes_normal: nextCoeffs = [nextCoeffs[0],nextCoeffs[2],0.5*(nextCoeffs[0]+nextCoeffs[2])] if iterI > 1 and nSpikes_total <= nSpikes_normal: nextCoeffs = [nextCoeffs[2],nextCoeffs[1],0.5*(nextCoeffs[2]+nextCoeffs[1])] gCoeffsThisIter.append(nextCoeffs[2]) picklelist = [PPIdts,gCoeffsThisIter] file = open(filename, 'w') pickle.dump(picklelist,file) file.close() #Print the parameters and their default values: for idefval in range(0,len(defVals.keys())): thisdefval = defVals.keys()[idefval] if thisdefval.find('_Im') > -1: h('print "L5PC.apic[0].'+thisdefval+' = ", L5PC.apic[0].'+thisdefval+', "Default = ", '+str(defVals[thisdefval][1])) else: h('print "L5PC.soma[0].'+thisdefval+' = ", L5PC.soma[0].'+thisdefval+', "Default = ", '+str(defVals[thisdefval][0])) #Restore default values: for imutvar in range(0,len(MT[igene][imut])): mutvars = allmutvars[iallmutval][imutvar] mutvals = allmutvals[iallmutval][imutvar] if type(mutvars) is str: mutvars = [mutvars] for kmutvar in range(0,len(mutvars)): mutvar = mutvars[kmutvar] newVal = defVals[mutvar] if mutvar.find('_Ih') > -1: updateThese = [1,1,1] elif mutvar.find('_Ca_HVA') > -1 or mutvar.find('_Ca_LVAst') > -1 or mutvar.find('_SKv3.1') > -1 or mutvar.find('_Ca_HVA') > -1 or mutvar.find('_SK_E2') > -1 or mutvar.find('_NaTa_t') > -1 or mutvar.find('_CaDynamics_E2') > -1: updateThese = [1,1,0] elif mutvar.find('_K_Pst') > -1 or mutvar.find('_K_Tst') > -1 or mutvar.find('_Nap_Et2') > -1: updateThese = [1,0,0] elif mutvar.find('_Im') > -1: updateThese = [0,1,0] else: print "Error: str=" + str(mutvar) updatedThese = [0,0,0] for iupdated in range(0,3): if updateThese[iupdated]: print """forsec L5PC."""+str(updatedVars[iupdated])+""" { """+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+""" }""" h("""forsec L5PC."""+str(updatedVars[iupdated])+""" { """+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+""" }""") axarr[ivar].plot(PPIdts,[x/1.1 for x in gCoeffsThisIter], color=thiscol, linewidth=lw) axnew[ivar].bar(barxs[iiter], 1000*gsThisIter, 0.8, color=thiscol) axarr[ivar].set_title(geneNames[igene],fontsize=fs+2) if ivar % 3 == 0: axarr[ivar].set_xticks([0,50,100,150,200]) else: axarr[ivar].set_xticks([50,100,150,200]) axarr[ivar].set_xlim([0,200]) axarr[ivar].set_yticks([0,2,4]) axarr[ivar].set_ylim([0,5.7]) if ivar < 3: axarr[ivar].set_xticklabels(['']*(4+(ivar%3==0))) else: axarr[ivar].set_xlabel('ISI (ms)',fontsize=fs+2) if ivar % 3 > 0: axarr[ivar].set_yticklabels(['','','']) else: axarr[ivar].set_ylabel(ylabel_cg,fontsize=fs+2) for tick in axarr[ivar].yaxis.get_major_ticks()+axarr[ivar].xaxis.get_major_ticks(): tick.label.set_fontsize(fs) axarr[ivar].xaxis.set_ticks_position('bottom') axarr[ivar].yaxis.set_ticks_position('left') axnew[ivar].set_xlim([-3,3.8]) axnew[ivar].set_ylim([0,0.037]) axnew[ivar].set_xticks([]) axnew[ivar].set_yticks([0,0.01,0.02,0.03]) for tick in axnew[ivar].yaxis.get_major_ticks()+axnew[ivar].xaxis.get_major_ticks(): tick.label.set_fontsize(fs-2) axnew[ivar].xaxis.set_ticks_position('bottom') axnew[ivar].yaxis.set_ticks_position('left') axnew[ivar].set_xlabel(ylabel_g,fontsize=fs) if useLatex: params = {'text.latex.preamble': [r"\usepackage{upgreek}"], 'text.usetex': True} plt.rcParams.update(params) f.savefig("figure5.eps")