TITLE detailed model of glutamate AMPA receptors COMMENT ----------------------------------------------------------------------------- Kinetic model of AMPA receptors =============================== 6-state gating model: similar to that suggested by Patneau and Mayer, Neuron 6:785 (1991) Patneau et al, J Neurosci 13:3496 (1993) C ---- C1 -- C2 -- O | | D1 D2 ----------------------------------------------------------------------------- Based on voltage-clamp recordings of AMPA receptor-mediated currents in rat hippocampal slices (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994), this model was fit directly to experimental recordings in order to obtain the optimal values for the parameters (see Destexhe, Mainen and Sejnowski, 1996). ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it is to be used in conjunction with a sepearate mechanism to describe the release of transmitter and that provides the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- See details in: Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling (2nd edition; edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25. (electronic copy available at http://cns.iaf.cnrs-gif.fr) Alain Destexhe and Zach Mainen, 1995 ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS AMPA5 POINTER C RANGE C0, C1, C2, D1, D2, O RANGE g, gmax, rb GLOBAL Erev GLOBAL Rb, Ru1, Ru2, Rd, Rr, Ro, Rc GLOBAL vmin, vmax NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = 0 (mV) : reversal potential gmax = 500 (pS) : maximal conductance vmin = -120 (mV) vmax = 100 (mV) : Rates Rb = 13 (/mM /ms): binding : diffusion limited (DO NOT ADJUST) Ru1 = 0.0059 (/ms) : unbinding (1st site) Ru2 = 86 (/ms) : unbinding (2nd site) Rd = 0.9 (/ms) : desensitization Rr = 0.064 (/ms) : resensitization Ro = 2.7 (/ms) : opening Rc = 0.2 (/ms) : closing } ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance C (mM) : pointer to glutamate concentration rb (/ms) : binding } STATE { : Channel states (all fractions) C0 : unbound C1 : single glu bound C2 : double glu bound D1 : single glu bound, desensitized D2 : double glu bound, desensitized O : open state 2 } INITIAL { C0=1 C1=0 C2=0 D1=0 D2=0 O=0 } BREAKPOINT { SOLVE kstates METHOD sparse g = gmax * O i = (1e-6) * g * (v - Erev) } KINETIC kstates { rb = Rb * C ~ C0 <-> C1 (rb,Ru1) ~ C1 <-> C2 (rb,Ru2) ~ C1 <-> D1 (Rd,Rr) ~ C2 <-> D2 (Rd,Rr) ~ C2 <-> O (Ro,Rc) CONSERVE C0+C1+C2+D1+D2+O = 1 }