TITLE detailed model of GABA-A receptors COMMENT ----------------------------------------------------------------------------- Kinetic model of GABA-A receptors ================================= 5-state gating model from Busch and Sakmann (Cold Spring Harbor Symp. Quant. Biol. 55: 69-80, 1990) C -- C1 -- C2 | | O1 O2 ----------------------------------------------------------------------------- Based on voltage-clamp recordings of GABAA receptor-mediated currents in rat hippocampal slices (Otis and Mody, Neuroscience 49: 13-32, 1992), this model was fit directly to experimental recordings in order to obtain the optimal values for the parameters (see Destexhe, Mainen and Sejnowski, 1996). ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it is to be used in conjunction with a sepearate mechanism to describe the release of transmitter and that provides the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- See details in: Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling (2nd edition; edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25. (electronic copy available at http://cns.iaf.cnrs-gif.fr) Written by Alain Destexhe, Laval University, 1995 ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS GABAa5 POINTER C RANGE C0, C1, C2, O1, O2 RANGE g, gmax, f1, f2 GLOBAL Erev, kf1, kf2, kb1, kb2, a1, b1, a2, b2 NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = -80 (mV) : reversal potential gmax = 500 (pS) : maximal conductance : Rates : from Destexhe, Mainen and Sejnowski, 1996 kf1 = 0.02 (/uM /ms) : binding kf2 = 0.01 (/uM /ms) : binding kb1 = 4.6 (/ms) : unbinding kb2 = 9.2 (/ms) : unbinding a1 = 3.3 (/ms) : opening b1 = 9.8 (/ms) : closing a2 = 10.6 (/ms) : opening b2 = 0.41 (/ms) : closing } COMMENT : from Busch and Sakmann kf1 = 0.2 (/uM /ms) : binding kf2 = 0.1 (/uM /ms) : binding kb1 = 3 (/ms) : unbinding kb2 = 6 (/ms) : unbinding a1 = 0.7 (/ms) : opening b1 = 4 (/ms) : closing a2 = 10 (/ms) : opening b2 = 0.055 (/ms) : closing ENDCOMMENT ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance C (mM) : pointer to glutamate concentration f1 (/ms) : binding f2 (/ms) : binding } STATE { : Channel states (all fractions) C0 : unbound C1 : single bound C2 : double bound O1 : open O2 : open } INITIAL { C0 = 1 C1 = 0 C2 = 0 O1 = 0 O2 = 0 } BREAKPOINT { SOLVE kstates METHOD sparse g = gmax * (O1+O2) i = (1e-6) * g * (v - Erev) } KINETIC kstates { f1 = kf1 * (1e3) * C f2 = kf2 * (1e3) * C ~ C0 <-> C1 (f1,kb1) ~ C1 <-> C2 (f2,kb2) ~ C1 <-> O1 (a1,b1) ~ C2 <-> O2 (a2,b2) CONSERVE C0+C1+C2+O1+O2 = 1 }