function[Starts Goals Decoded Vec_l FirstError LastError Steps] = VectorCellModel(GC_cpm,DrawFig) %% Rate-coded vector cell model of vector navigation with grid cells % Daniel Bush, UCL Institute of Cognitive Neuroscience % Reference: Using Grid Cells for Navigation (2015) Neuron (in press) % Contact: drdanielbush@gmail.com % % Inputs: % GC_cpm = Number of grid cells per unique phase, in each module % DrawFig = Plot figure of errors (0 / 1) % % Outputs: % Starts = Random 2D start locations (m) % Goals = Random 2D goal locations (m) % Decoded = 2D translation vector decoded from grid cell activity (m) % Vec_l = Length of decoded 2D translation vector (m) % FirstError = Error in first decoded translation vector (m) % LastError = Error in final decoded translation vector (m) % Steps = No. of iterative steps used to compute translation vector % Provide some parameters for the simulation iterations = 1000; % How many iterations to run? Range = 500; % Range (m) GC_mps = 20; % Unique grid cell phases on each axis, per module GC_scales = 0.25.*1.4.^(0:9); % Grid cell scales (m) GC_r = 30; % Peak grid cell firing rate (Hz) dt = 0.1; % Time window of grid cell firing (s) Emax_k = 0.01; % E-max winner-take-all parameter (see de Almeida et al., 2009) N_vec_f = 12500; % Number of fine-grained vector cell dendrites N_vec_c = 1250; % Number of coarse-grained vector cells % Assign the vectors encoded by the vector cell dendrites and cells Vectors_f = linspace(0,Range,N_vec_f+1); % Assign the linear range of vectors encoded by the fine-grained vector cells (dendrites) Vectors_c = 0; % Assign the psuedo-exponential range of vectors encoded by the coarse-grained vector cells for scale = 1 : length(GC_scales) Vectors_c = [Vectors_c Vectors_c(end)+linspace(GC_scales(scale).*(Range/(sum(GC_scales)*100)),GC_scales(scale).*Range/sum(GC_scales),round(N_vec_c/length(GC_scales)))]; end clear scale % Generate synaptic weight matrices (grid cells to vector cell dendrites / % vector cell dendrites to cells) Grid_Vec_w = zeros(GC_mps,GC_mps,GC_mps); % Multiplicative grid cell output synapses for offset = 1 : GC_mps for vec = 1 : GC_mps syn = offset + vec - 1; syn(syn>GC_mps) = syn-GC_mps; Grid_Vec_w(offset,syn,vec) = 5e-4; clear syn end end clear offset vec Vec_Vec_w = zeros(GC_mps,N_vec_f+1,length(GC_scales)); % Grid cell to fine-grained vector cell dendrite synapses for scale = 1 : length(GC_scales) for offset = 1 : GC_mps Vec_Vec_w(offset,:,scale) = (cos((mod(Vectors_f-((offset-1)/GC_mps)*GC_scales(scale),GC_scales(scale))/GC_scales(scale))*2*pi)+1)/2*5e-4; end end clear scale offset Vec_fc_w = zeros(N_vec_f,N_vec_c); % Fine-grained vector cell dendrite to coarse-grained vector cell synapses for c = 1 : length(Vectors_f) [i ind] = min(abs(Vectors_f(c)-Vectors_c)); Vec_fc_w(c,ind) = 1; clear i ind end clear c % Assign some memory for the output Starts = nan(iterations,2); % Log of start positions Goals = nan(iterations,2); % Log of goal positions Decoded = nan(iterations,2,5); % Log of active vector cells on each axis Vec_l = nan(iterations,1); % Log of true vector lengths FirstError = nan(iterations,1); % Log of first distance error for each computed vector LastError = nan(iterations,1); % Log of last distance error for each computed vector Steps = nan(iterations,1); % Log of steps taken % For each iteration... for i = 1 : iterations % Update the user if mod(i,iterations/10)==0 disp([int2str(i/iterations*100) '% complete...']); drawnow end % Randomly assign start and goal locations Starts(i,:) = [Range*rand Range*rand]; Goals(i,:) = [Range*rand Range*rand]; % Start the iterative vector navigation process step = 1; stop = false; while ~stop % For each axis... for ax = 1 : 2 % ...assign memory for the output vector_out = zeros(N_vec_f+1,2); if step == 1 start = Starts(i,:); end % Then, for each scale... for scale = 1 : length(GC_scales) % Generate the mean firing rate of all cells in that grid module on that axis StartRates = (1+cos(((mod(start(1,ax),GC_scales(scale))/GC_scales(scale))*GC_mps-(1:GC_mps)')/GC_mps*2*pi))/2*GC_r*dt; GoalRates = (1+cos(((mod(Goals(i,ax),GC_scales(scale))/GC_scales(scale))*GC_mps-(1:GC_mps)')/GC_mps*2*pi))/2*GC_r*dt; % Convert that to Poisson firing in each of the grid cells encoding each phase offset StartRates = sum(poissrnd(repmat(StartRates,[1 GC_cpm])),2); GoalRates = sum(poissrnd(repmat(GoalRates,[1 GC_cpm])),2); % Compute the output of each grid cell module through the multiplicative synapses multsyn_dir1 = sum(squeeze(sum(repmat(StartRates * GoalRates', [1 1 GC_mps]).*Grid_Vec_w)))'; multsyn_dir2 = sum(squeeze(sum(repmat(GoalRates * StartRates',[1 1 GC_mps]).*Grid_Vec_w)))'; % Compute the input to each fine grained vector cell dendrite from that grid cell module input_dir1 = (multsyn_dir1' * Vec_Vec_w(:,:,scale))'; input_dir2 = (multsyn_dir2' * Vec_Vec_w(:,:,scale))'; % Store the overall output of vector cell dendrites vector_out(:,1) = vector_out(:,1) + input_dir1; vector_out(:,2) = vector_out(:,2) + input_dir2; clear StartRates GoalRates multsyn_dir1 multsyn_dir2 input_dir1 input_dir2 end % Implement the WTA algorithm and decode the vector as the weighted % mean of all vector cells firing in each array vector_out = double(vector_out>((1-Emax_k)*max(vector_out(:)))); Decoded(i,ax,step) = nanmean([Vectors_c((vector_out(:,1)'*Vec_fc_w)>0) -Vectors_c((vector_out(:,2)'*Vec_fc_w)>0)]); end clear ax scale % Then, unless the last position is within one metre of the % goal, move to the new start position and take another step if (sqrt(sum((start + 0.8 .*Decoded(i,:,step) - Goals(i,:)).^2)) > 1) && (step <= 5) start = start + 0.8 .* Decoded(i,:,step); step = step + 1; else stop = true; end clear vector_out end % Compute the true vector length, first step error and total number of steps FirstError(i,1) = sqrt(sum(((Goals(i,:) - Starts(i,:)) - Decoded(i,:,1)).^2,2)); LastError(i,1) = sqrt(sum((Goals(i,:) - start - Decoded(i,:,step)).^2,2)); Vec_l(i,1) = sqrt(sum((Goals(i,:) - Starts(i,:)).^2,2)); Steps(i,1) = step; clear step start stop end % Plot vector length v error data, if required if DrawFig figure subplot(2,2,1) scatter(1:length(Vectors_c),Vectors_c,'k.') set(gca,'FontSize',14) xlabel('Vector Cell Index','FontSize',14) ylabel('Encoded Vector (m)','FontSize',14) axis square subplot(2,2,2) temp = histc(LastError,linspace(0,ceil(max(LastError)*100)/100,100)) ./ iterations; bar(linspace(0,ceil(max(LastError)*100),100),temp,'FaceColor','k','EdgeColor','k') set(gca,'FontSize',14) xlabel('Error in Decoded Translation Vector (cm)','FontSize',14) ylabel('Relative Frequency','FontSize',14) axis square subplot(2,2,3) scatter(Vec_l,FirstError*100,'k.') set(gca,'FontSize',14) xlabel('True Translational Vector Length (m)','FontSize',14) ylabel('First Decoded Translational Vector Error (cm)','FontSize',14) b2 = regress(FirstError*100,[Vec_l ones(size(Vec_l,1),1)]); hold on plot(linspace(0,max(Vec_l),10),b2(2) + b2(1).*linspace(0,max(Vec_l),10),'r','LineWidth',3) hold off axis square clear b2 end clear i Grid_Vec_w Vec_Vec_w Emax_k n_iters N_vec_c N_vec_f Norm Range iterations Vec_fc_w Vectors_f