COMMENT Sodium current for the soma References: 1. Martina, M., Vida, I., and Jonas, P. Distal initiation and active propagation of action potentials in interneuron dendrites, Science, 287:295-300, 2000. soma axon-lacking dend axon-bearing dend Na+ gmax 107 ps/um2 117 ps/um2 107 ps/um2 slope 10.9 mV/e 11.2 mV/e 11.2 mV/e V1/2 -37.8 mV -45.6 mV -45.6 mV 2. Marina, M. and Jonas, P. Functional differences in Na+ channel gating between fast-spiking interneurons and principal neurones of rat hippocampus, J. Physiol., 505.3:593-603, 1997. *Note* The interneurons here are basket cells from the dentate gyrus. Na+ Activation V1/2 -25.1 mV slope 11.5 Activation t (-20 mV) 0.16 ms Deactivation t (-40 mV) 0.13 ms Inactivation V1/2 -58.3 mV slope 6.7 onset of inactivation t (-20 mV) 1.34 ms onset of inactivation t (-55 mV) 18.6 ms recovery from inactivation t 2.0 ms (30 ms conditioning pulse) recovery from inactivation t 2.7 ms (300 ms conditioning pulse) ENDCOMMENT UNITS { (mA) = (milliamp) (mV) = (millivolt) } NEURON { SUFFIX Naaxon USEION na READ ena WRITE ina RANGE gna, ina GLOBAL minf, hinf, hexp, mtau, htau } INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} PARAMETER { v (mV) celsius = 24 (degC) dt (ms) gna = .0107 (mho/cm2) ena = 90 (mV) } STATE { m h } ASSIGNED { ina (mA/cm2) minf mexp hinf hexp mtau (ms) htau (ms) } INITIAL { rate(v) m = minf h = hinf } BREAKPOINT { SOLVE state METHOD cnexp ina = gna*m*m*m*h*(v - ena) } DERIVATIVE state { rate(v) m'=(minf-m)/mtau h'=(hinf-h)/htau } UNITSOFF PROCEDURE rate(v(mV)) { :Computes rate and other constants at :current v. :Call once from HOC to initialize inf at resting v. LOCAL q10, tinc, alpha, beta TABLE minf, hinf, hexp, mtau, htau DEPEND celsius FROM -200 TO 100 WITH 300 q10 = 3^((celsius - 24)/10) tinc = -dt*q10 alpha = 0.1*vtrap(-(v+38),10) beta = 4*exp(-(v+63)/18) mtau = 1/(alpha + beta) minf = alpha*mtau alpha = 0.07*exp(-(v+63)/20) beta = 1/(1+exp(-(v+33)/10)) htau = 1/(alpha + beta) hinf = alpha*htau hexp = 1-exp(tinc/htau) } FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns. if (fabs(x/y) < 1e-6) { vtrap = y*(1 - x/y/2) }else{ vtrap = x/(exp(x/y) - 1) } } UNITSON