// $Id: msarm.hoc,v 1.252 2012/07/21 21:55:29 samn Exp $ // Last revision: 5/25/13 (sald) // Modification of the code for simple virtual 2D arm to interface with musculoskeletal 2D arm // Set up Python object to allow interface with arminterface.py module. objref pyobj pyobj = new PythonObject() objref gsyn // for graph with synaptic changes objref ls // for power spectra declare("verbosearm",0) //* templates - need to write begintemplate p2d double x[1],y[1] public x,y proc init () { if(numarg()==2) {x=$1 y=$2} } endtemplate p2d //* variables/declares // arm variables declare("aid","o[1]") // finitializehandler for arm declare("nqaupd","o[1]") // NQS for arm updates (not all involving position changes) declare("nqa","o[1]") // NQS for recording arm joint angles/positions in time declare("nqMCMD","o[1]") // NQS for recording motor commands during sim (to draw figure) declare("armAng","d[2]","ePos",new p2d(), "armPos",new p2d(),"tPos",new p2d()) // arm angles; elbow position; end-effector position; target position declare("tAng","d[2]") // target angle declare("sAng","d[2]") // starting angle declare("sPos","d[2]") // starting angle declare("minang","d[2]","maxang","d[2]") // min/max angles for each joint declare("armLen","d[2]") // length of each arm segment -- fixed throughout sim // muscle variables declare("nqE","o[1]") // has E assignment to muscle groups declare("nqDP","o[1]") // has DP assignment to muscle groups declare("MTYP","o[1]") // has muscle names declare("MLen","d[4]") // length of each muscle -- varies throughout sim declare("minMLen","d[4]","maxMLen","d[4]") // min/max muscle lengths declare("splitEM", 1) // whether to read only from half of the EM population declare("DiffRDEM",0) // whether to take difference from last activity when reading out EM activity declare("musExc","d[4]") // output muscle excitation declare("vEMmax",30) // max num of spikes of output EM population (depends on mcmdspkwd) - used to calculate normalized muscle excitation (musExc) declare("minDPrate",0.00001,"maxDPrate",100) // min and max firing rate of DP NSLOCs (tuned to different muscle lengths) declare("DPnoise",0.0) // noise of NSLOC input to DP cells declare("DPoverlap", 1) // whether to have overlap in the encoding of muscle lengths (~population coding) // time variables declare("aDT",10) // how often to update the whole arm apparatus declare("amoveDT",10) // how often to update the arm's position declare("mcmdspkwd",50) // motor command spike window; how wide to make the counting window (in ms) declare("EMlag",50) // lag between EM commands (at neuromuscular junction) and arm update declare("lastmovetime",0) // when was the last arm move (in ms)? declare("spdDT",10) // how often to update the muscle spindles (DP cells) declare("DPlag",50) // lag between arm movement and DP update declare("lastspdupdate",0) // when was the last spindle update (in ms)? declare("rlDT",50) // how often to check RL status declare("lastrlupdate",0) // when was the last RL update (in ms)? declare("muscleNoiseChangeDT",500) // how often to alternate noise to muscle groups declare("randomMuscleDTmax",1000) // max random delay to alternate muscle groups (changes every time) (-1 = off = use fixed muscleNoiseChangeDT) declare("lastMuscleNoiseChange",0) // when was the last RL update (in ms)? declare("syDT",0) // dt for recording synaptic weights into nqsy -- only used when syDT>0 declare("lastSynScaling", 0) // last time syns scaling occurred declare("synScalingDT", 1000) // how often to apply synaptic scaling // learning variables //maxplastt_INTF6=rlDT + 50 // spike time difference over which to turn on eligibility declare("minRLerrchangeLTP",0.001) // minimum error change visible to RL algorithm for LTP (units in Cartesian coordinates) declare("minRLerrchangeLTD",0.001) // minimum error change visible to RL algorithm for LTD (units in Cartesian coordinates) declare("DoLearn",4,"DoReset",2,"DoRDM",2, "DoAnim",0) // learn; reset; use random targets for training; animate arm declare("invertAxis",0) // invert axis when plotting arm trajectory and target declare("RLMode",3) // reinforcement learning mode (0=none,1=reward,2=punishment,3=reward+punishment) declare("targid",2) // target ID for target to set up declare("XYERR",0) // whether to use cartesian error declare("ANGERR",1) // whether to use diff btwn targ and arm angle for error declare("TRAJERR",2) // whether to use diff btwn targ and arm angle for error declare("COMBERR",0) // whether to use diff btwn targ and arm angle for error declare("errTY",XYERR) // type of error - either XYERR or ANGERR declare("centerOutTask", 1) // use targets from center-out reaching task (1->L=2*monkey; 2->L=1.5*monkey) // declare("AdaptLearn",0) // whether to modulate learning level by distance from target // recording/visualization variables declare("lrec","o[2]") // recording from ES, EM declare("vEM",new Vector()) declare("pnq","o[2]") // NQS for motor command map declare("nqsy","o[2]") // for recording synaptic weights over time -- only saves L5 cell synapses declare("lastsysave",0) // when was the nqsy synaptic weight recording (in ms)? sprint(tstr,"o[%d][%d]",CTYPi+1,CTYPi+1) declare("lssyavg",tstr) // list of average synaptic weights vs time for a particular population declare("syCTYP",1) // 1=only ES->EM ; 2 = all connections // babble noise variables declare("lem","o[1]") // List of EM AM2 'noise' NetStims to allow modulation declare("AdaptNoise",0) // whether to adapt noise declare("LTDCount",0) // number of recent LTD periods - used for noise adaptation declare("StuckCount",2) // number of periods where arm doesn't improve and should adapt noise declare("EMNoiseRate",250)//sgrhzEE) // rate of noise inputs to EM cells declare("EMNoiseRateInc",50) // rate by which to increase noise rate when arm gets stuck declare("EMNoiseRateDec",25) // rate by which to decrease noise rate when arm gets stuck declare("ResetEMNoiseRate",0) // reset EMNoiseRate to sgrhzEE @ start of run ? declare("EMNoiseRateMax",3e3) // rate of noise inputs to EM cells declare("EMNoiseRateMin",50) // rate of noise inputs to EM cells declare("EMNoiseMuscleGroup", 0) // alternate muscle group (-1=no alternation; initial muscle: 0=shext; 1=shflex ; 2=elext; 3=elflex) or pattern in expSeq declare("exploreTot", 32) // max number of exploratory sequences to use from expSeq; if =4, activate only 1 muscle at a time declare("expSeq","d[32]") // sequence of muscles activated during exploratory movements (in pairs) /* --------------------------------------------------*/ /* DP/NSLOC FUNCTIONS */ /* ---------------------------------------------------*/ //* assignDP - set DP cell muscle length range responsiveness. store info in nqDP proc assignDP () { local ii,jj,shmlenrangewid,elmlenrangewid,shminmlen,shmaxmlen,elminmlen,elmaxmlen localobj xo {nqsdel(nqDP) nqDP = new NQS("col","id","ty","mid","mids","MLmin","MLmax") nqDP.strdec("mids")} // Calculate the width of each subrange. shmlenrangewid = (maxMLen[0]-minMLen[0]) / (cedp.count() / NMUSCLES) // muscle length range / (total num of dp units / number of muscles) elmlenrangewid = (maxMLen[2]-minMLen[2]) / (cedp.count() / NMUSCLES) // Initialize the subrange bounds to the first subrange. shminmlen = minMLen[0] shmaxmlen = minMLen[0]+shmlenrangewid elminmlen = minMLen[2] elmaxmlen = minMLen[2]+elmlenrangewid // Loop over the different subranges... for ii=0,cedp.count() / NMUSCLES - 1 { // For the shoulder cells... for jj=0,1 { xo=cedp.o(ii*NMUSCLES+jj) xo.start = 1 // if set to -1 they never spike; set to >0 to start spiking xo.number = maxDPrate*tstop // set to max spikes (eg. 1000 Hz * 30 sec) xo.noise = DPnoise // noise level - if 0 spike times are deterministic xo.interval = 1/minDPrate // set base firing rate // Set the muscle length range in the particular cell. if (DPoverlap) { xo.mlenmin = shminmlen-shmlenrangewid xo.mlenmax = shmaxmlen+shmlenrangewid // Add the muscle length bounds to the DP NQS table. nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,shminmlen-shmlenrangewid,shmaxmlen+shmlenrangewid) } else { xo.mlenmin = shminmlen xo.mlenmax = shmaxmlen // Add the muscle length bounds to the DP NQS table. nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,shminmlen,shmaxmlen) } } // For the elbow cells... for jj=2,3 { xo=cedp.o(ii*NMUSCLES+jj) xo.start = 1 // if set to -1 they never spike; set to >0 to start spiking xo.number = maxDPrate*tstop // set to max spikes (eg. 1000 Hz * 30 sec) xo.noise = DPnoise // noise level - if 0 spike times are deterministic xo.interval = 1/minDPrate // set base firing rate if (DPoverlap) { xo.mlenmin = elminmlen-elmlenrangewid xo.mlenmax = elmaxmlen+elmlenrangewid // Add the muscle length bounds to the DP NQS table. nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,elminmlen-elmlenrangewid,elmaxmlen+elmlenrangewid) } else { // Set the muscle length range in the particular cell. xo.mlenmin = elminmlen xo.mlenmax = elmaxmlen // Add the muscle length bounds to the DP NQS table. nqDP.append(1,xo.id,DP,xo.zloc,MTYP.o(xo.zloc).s,elminmlen,elmaxmlen) } } // Move to the next subrange. shminmlen += shmlenrangewid shmaxmlen += shmlenrangewid elminmlen += elmlenrangewid elmaxmlen += elmlenrangewid } } //* updateDP - update the DP cell drive proc updateDP () { local mlen, mlentime,nqarow,nqcnum localobj xo // The first argument is the time at which to read muscle lengths. If none // is provided, the default is the current time. if (numarg() > 0) { mlentime = $1 nqa.verbose = 0 nqarow = nqa.select("t","<=",mlentime) - 1 nqa.tog() nqa.verbose = 1 } else mlentime = t nqcnum = nqaupd.fi("spupd") //Remember that we update the DP cells in nqaupd. nqaupd.v[nqcnum].x(nqaupd.v.size-1) = 1 // Read arm angles from Python interface to MSM for i = 0, 1 { armAng[i] = pyobj.axf.getAngleReceived(i) } // Read muscle lengths from Python interface to MSM for i = 0, 3 { MLen[i] = pyobj.axf.getLengthReceived(i) //print MLen[i] } // Update the interval (firing rate) of the DP/NSLOC units according to muscle length tuning curve nqcnum = nqa.fi("ML0") for ltr(xo,cedp) { // select mlen value as a function of t and zloc if (mlentime == t) { // use current muscle length mlen = MLen[xo.zloc] } else { // use muscle length stored in nqa (previous t) mlen = nqa.v[nqcnum+xo.zloc].x(nqarow) } // update value of DP NSLOCs based on whether mlen falls in its range [mlenmin, mlenmax} if ((mlen >= xo.mlenmin) && (mlen <= xo.mlenmax)) { xo.interval = 1000.0/maxDPrate // interval = inverse of max firing rate (in ms) } else { xo.interval = 1000.0/minDPrate // interval = inverse of min firing rate (in ms) } /*if (t <600) { xo.interval = 1000.0/maxDPrate } else if (t >600 && t<1200) { xo.interval = 1000.0/minDPrate } else if (t >1200) { xo.interval = 1000.0/maxDPrate }*/ } } /* --------------------------------------------------*/ /* EM / ES FUNCTIONS */ /* ---------------------------------------------------*/ //* GetEMType(cell id) - returns type of motor unit - only used for EM cells // lookup in MTYP List to see string representation func GetEMType () { if($1 < col.ix[EM] || $1 > col.ixe[EM]) return -1 // not an EM cell? return -1 return $1 % 4 // otherwise, return type } //* assignEM() - create nq with list of EM cells and associated muscle proc assignEM () { local i,ct,mid,a localobj vty {nqsdel(nqE) nqE = new NQS("col","id","ty","mid","mids") nqE.strdec("mids")} a=allocvecs(vty) vty.append(EM) if (splitEM) { nqE.clear(col[0].numc[EM]/2) for vtr(&ct,vty) for i=col[0].ix[ct]+col[0].numc[EM]/2,col[0].ixe[ct] { mid = i%4 nqE.append(1,i,ct,mid,MTYP.o(mid).s) } } else { nqE.clear(col[0].numc[EM]) for vtr(&ct,vty) for i=col[0].ix[ct],col[0].ixe[ct] { mid = i%4 nqE.append(1,i,ct,mid,MTYP.o(mid).s) } } dealloc(a) } //* readoutEM - read activity from EM - store results in vEM proc readoutEM () { local i,idx,ldx,sz vEM.resize(MTYP.count) // resize to the number of muscle groups vEM.fill(0) ldx=1 // column? for i=0,nqE.v.size-1 { // for all EM units idx=nqE.v[1].x(i)-col[0].ix[EM] // obtain the relative idx value vEM.x(nqE.v[3].x(i)) += lrec[ldx].o(1).o(idx).size // add all recorded spikes from that unit to corresponding count lrec[ldx].o(1).o(idx).resize(0) // reset to 0 } if(DiffRDEM) { sz=nqa.v.size if(sz) { vEM.x(0) -= nqa.v[5].x(sz-1) vEM.x(1) -= nqa.v[6].x(sz-1) vEM.x(2) -= nqa.v[7].x(sz-1) vEM.x(3) -= nqa.v[8].x(sz-1) for i=0,3 if(vEM.x(i) < 0) vEM.x(i) = 0 } } } //* recE - set up recording from EM cells proc recE () { //lrec[0] = mkrecl(col[0],ES) lrec[1] = mkrecl(col[0],EM) } //* svsywts - save synaptic weights from ES cells proc svsywts () { local i,a localobj xo,vwg,vtau,vinc,vmaxw,vidx,vt,vpre // print "svsywts: t " , t a=allocvecs(vidx,vwg,vtau,vinc,vmaxw,vt,vpre) if (syCTYP == 1) { //record only ES synapses for ltr(xo,col[0].ce) { if(xo.type==ES) { vrsz(xo.getdvi(vidx),vwg,vtau,vinc,vmaxw,vt,vpre) xo.getplast(vwg,vtau,vinc,vmaxw) // get current weight gains vt.fill(t) //time vpre.fill(xo.id) //presynaptic id nqsy.v[0].append(vpre) nqsy.v[1].append(vidx) nqsy.v[2].append(vwg) nqsy.v[3].append(vt) } } } else (syCTYP == 2) { //record all synapses for ltr(xo,col[0].ce) { vrsz(xo.getdvi(vidx),vwg,vtau,vinc,vmaxw,vt,vpre) xo.getplast(vwg,vtau,vinc,vmaxw) // get current weight gains vt.fill(t) //time vpre.fill(xo.id) //presynaptic id nqsy.v[0].append(vpre) nqsy.v[1].append(vidx) nqsy.v[2].append(vwg) nqsy.v[3].append(vt) } } dealloc(a) } proc synScaling () {local i,a,wtSumOriginal,wtSum,scaleFactor localobj xo,vidx,delay_vec,prob_vec,wt1vec,wt1vecAbs,wt2vec,wt2vecAbs,distalsyns,wgain,vwgain,vplasttau,vplastinc,vplastmaxw // allocate vectors a=allocvecs(vidx,delay_vec,prob_vec,wt1vec,wt1vecAbs,wt2vec,wt2vecAbs,distalsyns,wgain,vwgain,vplasttau,vplastinc,vplastmaxw) wtSumOriginal=0 wtSum=0 scaleFactor=0 // loop over all cells for ltr(xo,col[0].ce) { // set vector length based on number of postsynaptic connections vrsz(xo.getdvi(vidx),delay_vec,prob_vec,wt1vec,wt1vecAbs,wt2vec,wt2vecAbs,distalsyns,wgain) // read all weight gains and vwt1- getdvi xo.getdvi(vidx,delay_vec,prob_vec,wt1vec,wt2vec,distalsyns,wgain) // get absolute weight of wt1 wt1vecAbs.abs(wt1vec) // get absolute weight of wt1 wt2vecAbs.abs(wt2vec) if (wgain.sum() > 0) { // sum original weights wtSumOriginal=wtSumOriginal+wt1vecAbs.sum()+wt2vecAbs.sum() // sum current weights wtSum=wtSum+wt1vecAbs.mul(wgain).sum()+wt2vecAbs.mul(wgain).sum() } } // calculate normalizing constant (scaling factor) scaleFactor = 1.0 * wtSumOriginal / wtSum //print "Scaling Factor: ", scaleFactor if (scaleFactor < 1) { // set all weight gains via setplast for ltr(xo,col[0].ce) { //print "pre:", xo.gid // set vector length based on number of postsynaptic connections vrsz(xo.getdvi(vidx),vwgain,vplasttau,vplastinc,vplastmaxw) // read wgains xo.getplast(vwgain,vplasttau,vplastinc,vplastmaxw) // scale synaptic weight gain vwgain.mul(scaleFactor) // update scaled wgains xo.setplast(vwgain,vplasttau,vplastinc,vplastmaxw) } } dealloc(a) } /* --------------------------------------------------*/ /* ARM/MUSCLE FUNCTIONS */ /* ---------------------------------------------------*/ //* initarm - init arm length, excitation, DP responsiveness, nrnpython axf - combine with initarmCB?? proc initarm () { // arm dimensions - multiplied by 0.5 to match Alex's model dimensions armLen[0] = 0.4634 - 0.173 // elbow - shoulder from MSM; previously, 0.5*(0.55) // shoulder to elbow (check if ms = wam length !) if (centerOutTask >= 3) { armLen[1] = 0.7169 - 0.4634 + 0.18 // radioulnar - elbow from MSM; previously, 0.5*(0.3+0.06+0.095) // elbow to center of hand = elbow to wrist + wrist length + hand length/2 (check if ms = wam legth) } else { armLen[1] = 0.7169 - 0.4634 // radioulnar - elbow from MSM; previously, 0.5*(0.3+0.06+0.095) // elbow to center of hand = elbow to wrist + wrist length + hand length/2 (check if ms = wam legth) } // min and max joint angles (in degrees) minang[0] = deg2rad(-10) //shoulder maxang[0] = deg2rad(110) minang[1] = deg2rad(0) //elbow maxang[1] = deg2rad(140) // if using normalizedFiberLength //minMLen[0] = 0.4 maxMLen[0] = 1.6 // define min and max muscle length values //minMLen[1] = 0.4 maxMLen[1] = 1.6 //minMLen[2] = 0.4 maxMLen[2] = 1.6 //minMLen[3] = 0.4 maxMLen[3] = 1.6 // if using fiberLength minMLen[0] = 0.03 maxMLen[0] = 0.23 // define min and max muscle length values minMLen[1] = 0.03 maxMLen[1] = 0.23 minMLen[2] = 0.03 maxMLen[2] = 0.23 minMLen[3] = 0.03 maxMLen[3] = 0.23 musExc[0] = 0 // shoulder extensor (deltoid) musExc[1] = 0 // shoulder flexor (pectoralis) musExc[2] = 0 // elbow extensor (triceps) musExc[3] = 0 // elbow flexor (biceps+brachialis) // create exploratory pattern of movements as pairs of muscle groups that are activated together (-1=no muscle) expSeq[0] = 0 expSeq[1] = -1 expSeq[2] = 1 expSeq[3] = -1 expSeq[4] = 2 expSeq[5] = -1 expSeq[6] = 3 expSeq[7] = -1 expSeq[8] = 0 expSeq[9] = 2 expSeq[10] = 1 expSeq[11] = 3 expSeq[12] = 0 expSeq[13] = 3 expSeq[14] = 1 expSeq[15] = 2 expSeq[16] = 3 expSeq[17] = -1 expSeq[18] = 1 expSeq[19] = -1 expSeq[20] = 2 expSeq[21] = -1 expSeq[22] = 0 expSeq[23] = -1 expSeq[24] = 1 expSeq[25] = 2 expSeq[26] = 1 expSeq[27] = 3 expSeq[28] = 0 expSeq[29] = 2 expSeq[30] = 0 expSeq[31] = 3 calculateCenterPos(sAng0,sAng1) // calculate center position (used for TRAJERR) assignDP() // assign DP responsiveness, store info in nqDP setTargByID(targid) // set target // Initialize the socket interface to the virtual or real (robotic) arm. nrnpython("import arminterface_pipe as axf") // run setup() in python- pyobj.axf.setup() sprint(tstr,"axf.setup(%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f)",tstop/1e3, aDT,sAng[0], sAng[1], tPos.x, tPos.y, damping, shExtGain, shFlexGain, elExtGain, elFlexGain) nrnpython(tstr) } //* initArmCB - initialize nqaupd, nqa and arm callbacks proc initArmCB () { local i // Set up the muscle commands NQS table. nqsdel(nqaupd) nqaupd = new NQS("t","shext","shflex","elext","elflex","reinf","mvmt","spupd") // Set up the arm NQS table. {nqsdel(nqa) nqa=new NQS("t","ang0","ang1","x","y","shext","shflex","elext","elflex","ex","ey","phase")} nqa.resize("ML0","ML1","ML2","ML3","subphase","errxy","errang") // Clear out the current muscle command array vEM. if(vEM==nil) vEM = new Vector(MTYP.count) else {vEM.resize(MTYP.count) vEM.fill(0)} // initialize arm callback cvode.event(aDT,"updateArm()") // Do RL with dopamine if(DoLearn==4) { LearnON() } else LearnOFF() // create nqsy if(syDT>0) {nqsdel(nqsy) nqsy=new NQS("id1","id2","wg","t") cvode.event(syDT,"svsywts()")} // initialize last variables to 0 LTDCount = lastmovetime = lastspdupdate = lastrlupdate = lastsysave = lastmuscle = lastMuscleNoiseChange = lastSynScaling = 0 // reset EM noise rate if(ResetEMNoiseRate && EMNoiseRate!=sgrhzEE) SetEMNoiseRate(EMNoiseRate=sgrhzEE) } //* mkmyTYP - set up names of muscle groups proc mkmyTYP () { MTYP=new List() MTYP.append(new String("shext")) MTYP.append(new String("shflex")) MTYP.append(new String("elext")) MTYP.append(new String("elflex")) } //* updateArm - update all arm apparatus // This includes muscle commands, joints, muscle spindles, and reinforcement learning signals. proc updateArm () { local errxy,errang,nqcnum,ii,tt localobj randomMuscleDT readoutEM()//Read M1 muscle group command spike counts since updateArm() call. These go into vEM. if (t == aDT) { // If we are at the beginning of the simulation... nqaupd.append(0,0,0,0,0,0,0,0) // Set up an arm update entry for t=0. // Set up an arm position entry for t=0. errxy = getArmErr(XYERR) // gets error in position if (errTY==ANGERR) { errang = getArmErr(ANGERR) // gets error in angle } else if (errTY==TRAJERR) { errang = getArmErr(TRAJERR) // gets error in angle } nqa.append(0,armAng[0],armAng[1],armPos.x,armPos.y,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),ePos.x,ePos.y,0,MLen[0],MLen[1],MLen[2],MLen[3],0,errxy,errang) updateDP() // Set up the initial DP cell activity. } // Add vEM to the muscle commands part of the arm update table, nqaupd. nqaupd.append(t,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),0,-1,0) // If it's time for another arm motion... if ((t - lastmovetime >= amoveDT)) { if (t >= mcmdspkwd + EMlag) { // Get all of the motor command entries in a window mcmdspkwd ms wide, back // EMlag ms from the current time t. {nqaupd.verbose=0 nqaupd.select("t","[)",t-mcmdspkwd-EMlag,t-EMlag)} // Set vEM to the sum of each of the relevant motor command entries. vEM.x(0) = nqaupd.getcol("shext").sum() vEM.x(1) = nqaupd.getcol("shflex").sum() vEM.x(2) = nqaupd.getcol("elext").sum() vEM.x(3) = nqaupd.getcol("elflex").sum() musExc[0] = vEM.x(0) / vEMmax musExc[1] = vEM.x(1) / vEMmax musExc[2] = vEM.x(2) / vEMmax musExc[3] = vEM.x(3) / vEMmax // if not enough time to collect spikes from sim (mcmdspikwindow) then use 0 excitation } else { musExc[0] = 0 musExc[1] = 0 musExc[2] = 0 musExc[3] = 0 } // Send a packet out to the virtual or real arm with neural excitations sprint(tstr,"axf.sendAndReceiveDataPackets(%f,%f,%f,%f,%f)",t, musExc[0], musExc[1], musExc[2], musExc[3]) nrnpython(tstr) // Update the arm position ePos.x = armLen[0] * cos(armAng[0]) // end of elbow ePos.y = armLen[0] * sin(armAng[0]) armPos.x = ePos.x + armLen[1] * cos(armAng[0] + armAng[1]) // wrist=arm position armPos.y = ePos.y + armLen[1] * sin(armAng[0] + armAng[1]) // Get errors errxy = getArmErr(XYERR) // gets error in position if (errTY==ANGERR) { errang = getArmErr(ANGERR) // gets error in angle } else if (errTY==TRAJERR) { errang = getArmErr(TRAJERR) // gets error in angle } // Set the database back. {nqaupd.tog() nqaupd.verbose=1} if (DoAnim) drarm() // Draw the arm configuration. lastmovetime = t // Remember the time of the event. // Add the nqa row number to the nqaupd table. nqcnum = nqaupd.fi("mvmt") nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = nqa.v.size - 1 } //If it's time for a muscle spindle cell update... if ((t - lastspdupdate >= spdDT) && (t >= DPlag)){ updateDP(t-DPlag) // Update DP cell activity. lastspdupdate = t // Remember the time of the event. } // If it's time for an RL update... if ((DoLearn==4) && (t - lastrlupdate > rlDT)) { // update EM muscle group that receives noise as input if (EMNoiseMuscleGroup > -1 && (t-lastMuscleNoiseChange >= muscleNoiseChangeDT)) { //print "muscle group=", EMNoiseMuscleGroup lastMuscleNoiseChange = t EMNoiseMuscleGroup += 2 // increase exploratory sequence index (seee expSeq) if (EMNoiseMuscleGroup >= exploreTot) { // wrap around EMNoiseMuscleGroup = 0 } // Use random delays to alternate the muscle that receives noise during exploratory movements if (randomMuscleDTmax>0) { randomMuscleDT = new Random() randomMuscleDT.ACG(inputseed+iepoch+t) //initialize random number generator randomMuscleDT.uniform(0,1) muscleNoiseChangeDT= randomMuscleDT.uniform(100,randomMuscleDTmax) EMNoiseMuscleGroup = int(randomMuscleDT.uniform(0,exploreTot/2))*2 print "muscleNoiseChangeDT= ",muscleNoiseChangeDT print "muscle group=", EMNoiseMuscleGroup } } if (verbosearm) print "Babble noise EM Muscle Group: ", EMNoiseMuscleGroup RLUpdate() // Do an RL update. lastrlupdate = t // Remember the time of the event. } // If it's time for synaptic scaling if ((DoLearn==4) && (t - lastSynScaling >= synScalingDT)) { synScaling() lastSynScaling = t } // Add a position entry to nqa. //print "shAng: ", armAng[0] //print "elAng: ", armAng[1] nqa.append(t,armAng[0],armAng[1],armPos.x,armPos.y,vEM.x(0),vEM.x(1),vEM.x(2),vEM.x(3),ePos.x,ePos.y,0,MLen[0],MLen[1],MLen[2],MLen[3],0,errxy,errang) if (syDT > 0 && t - lastsysave >= syDT) { // time for nqsy synaptic save svsywts() // Do a synaptic save. lastsysave = t // Remember the time of the event. } cvode.event(t+aDT,"updateArm()") // Post the next updateArm() event. // IF end, call python function to close sockets, save data and plot arm graphs (pass sim length as argument) if (t >= tstop-aDT/2) { //sprint(tstr,"axf.closeSavePlot(%f, %f)",t/1000, aDT) //nrnpython(tstr) print "Finished sim..." if (syDT > 0 && lastsysave < t) { // save synaptic weights in last step svsywts() // Do a synaptic save. } } } //* mkaid - setup handlers for periodic arm update proc mkaid () { aid = new FInitializeHandler(1,"initArmCB()") } /* --------------------------------------------------*/ /* LEARNING/NOISE FUNCTIONS */ /* ---------------------------------------------------*/ //* getArmErr([errtype]) - gets current error in position // 1st arg is optional - if left out, uses global errTY func getArmErr () { local dsq,ety, xtmp, ytmp, rotAng, xrot,yrot localobj tAngs if(numarg()>0) ety=$1 else ety=errTY if(ety == XYERR) { // error as Cartesian distance between hand position and target position return sqrt((armPos.x - tPos.x)^2 + (armPos.y - tPos.y)^2) } else if(ety == ANGERR) { // error as squared difference between joint and target angles return sqrt((armAng[0] - tAng[0])^2 + (armAng[1] - tAng[1])^2) } else if(ety == TRAJERR) { // error as squared difference between current position and ideal (straight line) trajectory line xtmp = armPos.x-sPos[0] ytmp = armPos.y-sPos[1] //print "armPos.x:",armPos.x,"ArmPos.y",armPos.y //print "xtemp:",xtmp,"ytemp:",ytmp //set angle of rotation as a function of target tAngs = new Vector() tAngs.append(0, -PI, -PI/2, PI/2, -PI/4, -3*PI/4, PI/4, 3*PI/4) rotAng=tAngs.x[targid] // rotate trajectory to position over positive x-axis (=target 0, center-right) //xrot = xtmp*cos(rotAng) - ytmp*sin(rotAng) yrot = xtmp*sin(rotAng) + ytmp*cos(rotAng) //print "yrot(error):", yrot // retrun deviation from ideal trajectory return abs(yrot) } } //* LearnON - turn on learning proc LearnON () { plaststartT_INTF6 = 0 plastendT_INTF6 = tstop * 2 } //* LearnOFF - turn off learning proc LearnOFF () { plaststartT_INTF6 = tstop * 2 plastendT_INTF6 = tstop * 3 } //* RLUpdate - reinforcement learning updateupdate - MODIFY proc RLUpdate () { local err1xy,err2xy,err1ang,err2ang,err1,err2,nqcnum,combRL // If we have at least 2 nqa entries... if (nqa.v.size > 1) { // Find the distance error of the 2nd-to-last hand position (in // nqa) from the target hand position. err1xy = nqa.getcol("errxy").x(nqa.v.size-2) // Find the distance error of the last hand position (in // nqa) from the target hand position. err2xy = nqa.getcol("errxy").x(nqa.v.size-1) // Find the distance error of the 2nd-to-last hand position (in // nqa) from the target hand position. err1ang = nqa.getcol("errang").x(nqa.v.size-2) // Find the distance error of the last hand position (in // nqa) from the target hand position. err2ang = nqa.getcol("errang").x(nqa.v.size-1) if(XYERR == errTY) { err1 = err1xy err2 = err2xy } else if (ANGERR == errTY) { err1 = err1ang err2 = err2ang } else if (TRAJERR == errTY) { err1 = err1ang // store traj error in same variable as ang err2 = err2ang } if(verbosearm) print "err1 : ", err1, " err2 " , err2 if ((DoLearn == 4) && (RLMode > 0)) { // RL with dopamine combRL=0 if(COMBERR==4) { if( err1xy - err2xy >= minRLerrchangeLTP && err1ang >= err2ang ) { //dev combRL = 1 // do LTP } else if( err2xy - err1xy >= minRLerrchangeLTD && err1ang < err2ang ) { //deviation change combRL = 2 // do LTD } } else if (COMBERR==2) { if( err1xy - err2xy >= minRLerrchangeLTP && abs(err1ang) < 0.03) { // midev combRL = 1 // do LTP } else if( err2xy - err1xy >= minRLerrchangeLTD && abs(err1ang) > 0.03) { // min deviation combRL = 2 // do LTD } } else if (COMBERR==3) { if( err1xy - err2xy >= minRLerrchangeLTP && abs(err1ang) < 0.02) { // midev2 combRL = 1 // do LTP } else if( err1ang 0.02) { // min deviation2 combRL = 2 // do LTD } } else if (COMBERR==1) { // alternate XYERR and TRAJERR if (errTY == XYERR) { errTY == TRAJERR } else if (errTY = TRAJERR) { errTY == XYERR } } nqcnum = nqaupd.fi("reinf") if (verbosearm) {print "err1: ", err1, " err2: " , err2, " err1-err2: ", err1-err2, " minRLerrchangeLTP: ", minRLerrchangeLTP, " minRLerrchangeLTD: ", minRLerrchangeLTD, " LTDCount: ", LTDCount} // Reward if (((err1 - err2 >= minRLerrchangeLTP) && ((RLMode == 1) || (RLMode == 3)) && COMBERR==0) || combRL==1) { // if(AdaptLearn) EPOTW_INTF6 = (err1 - err2) / err1 // else EPOTW_INTF6=1 col[0].ce.o(0).dopelearn(1) // LTP if (verbosearm) print "LTP!" nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = 1 // put in nqaupd under "reinf" LTDCount = 0 // print "LTDCount is now 0 , A" if(AdaptNoise) { // drop noise towards baseline EMNoiseRate -= EMNoiseRateDec if(EMNoiseRate < EMNoiseRateMin) EMNoiseRate = EMNoiseRateMin if(verbosearm) print "setting EMNoiseRate to ", EMNoiseRate //SetEMNoiseRate(EMNoiseRate) } // Punishment } else if (combRL==2 || ((err2 - err1 >= minRLerrchangeLTD) && ((RLMode == 2) || (RLMode == 3)) && COMBERR==0)) { // if(AdaptLearn) EDEPW_INTF6 = (err2 - err1) / err1 // else EDEPW_INTF6=1 col[0].ce.o(0).dopelearn(-1) // LTD if (verbosearm) print "LTD!" nqaupd.v[nqcnum].x(nqaupd.v.size - 1) = -1 // put in nqaupd LTDCount += 1 } else if(err2>0 && err2==err1) LTDCount += 1 // Adapt noise if(AdaptNoise && LTDCount >= StuckCount) { // if arm gets stuck, increase noise EMNoiseRate += EMNoiseRateInc if(EMNoiseRate > EMNoiseRateMax) EMNoiseRate = EMNoiseRateMax if(verbosearm) print "setting EMNoiseRate to ", EMNoiseRate //SetEMNoiseRate(EMNoiseRate) LTDCount = 0 // reset counter to 0 // print "LTDCount is now 0 , B" } SetEMNoiseRate(EMNoiseRate) if (verbosearm) print "setting EMNoiseRate to ", EMNoiseRate } } } //* get a List of Lists with the noise NetStims for EM cells obfunc LEMNoise () { local i,sy localobj nc,ncl,nsl,ls ncl=col.cstim.ncl // list of netconnections = lcstim.o(0).ncl nsl=col.cstim.nsl // list of netstims = lcstim.o(0).nsl ls=new List() // list of lists with noise netstims for case(&sy,AM2,NM2,GA,GA2) ls.append(new List()) // for each synapse type add new list for ltr(nc,ncl,&i) { // iterate through netconnections if(nc.syn.type == EM) { // if EM if(nc.weight[AM2]>0) { ls.o(0).append(nsl.o(i)) // add Netstim to list } else if(nc.weight[NM2]>0) { ls.o(1).append(nsl.o(i)) } else if(nc.weight[GA]>0) { ls.o(2).append(nsl.o(i)) } else if(nc.weight[GA2]>0) { ls.o(3).append(nsl.o(i)) } } } return ls } //* SetEMNoiseRate(rate,index) - set rate of EM cell noise // index: 0==AM2, 1==NM2, 2==GA, 3==GA2 proc SetEMNoiseRate () { local i,rate,idx localobj ns //splitEM=0 rate=$1 if(numarg()>1) idx=$2 else idx=0 //ncl=col.cstim.ncl // list of netconnections = lcstim.o(0).ncl if (verbosearm) print "rate is ", rate, "idx is ", idx if(lem==nil) lem=LEMNoise() // get list of lists with NetStims for ltr(ns,lem.o(idx), &i) { // iterate through netstims if ((splitEM && i >= col[0].numc[EM]/2) || splitEM==0) { // if splitEM only apply noise to half of EM isplit = i if (splitEM) {isplit = i-col[0].numc[EM]/2} if (EMNoiseMuscleGroup == -1 || (nqE.v(3).x(isplit) == expSeq[EMNoiseMuscleGroup]) || (nqE.v(3).x(isplit) == expSeq[EMNoiseMuscleGroup+1])) { // compare muscle id of cell with current muscle group if(rate <= 0) { ns.number = 0 } else { ns.interval = 1e3 / rate ns.number = tstop * rate / 1e3 //print "on:", i , " interval:", ns.interval } } else { // set to 0 the rest of muscle groups ns.interval = 1e3 / EMNoiseRateMin //print "off:", i, " interval:", ns.interval } } } //splitEM=1 } /* --------------------------------------------------*/ /* DRAW ARM FUNCTIONS */ /* ---------------------------------------------------*/ //* drtarg - draw target location proc drtarg () { local xsz,clr xsz = 0.05 if(numarg()>0) clr=$1 else clr=1 if (invertAxis) { drline(-tPos.x-xsz,-tPos.y-xsz,-tPos.x+xsz,-tPos.y+xsz,g,clr,4) // draw an x for the target drline(-tPos.x-xsz,-tPos.y+xsz,-tPos.x+xsz,-tPos.y-xsz,g,clr,4) } else { drline(tPos.x-xsz, tPos.y-xsz, tPos.x+xsz, tPos.y+xsz,g,clr,4) // draw an x for the target drline(tPos.x-xsz, tPos.y+xsz, tPos.x+xsz, tPos.y-xsz,g,clr,4) } } //* drarm([nqa,row from nqa,erase]) - draw arm location proc drarm () { local idx,shx, shy,ex,ey,wx,wy,ang0,ang1,ers,ln,xsz,she,shf,ele,elf localobj nqa,s ers=1 xsz=0.15 shx = 0 //0.173 ; use shoulder joint as reference shy = 0 ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) s=new String() // update using data from nqa if(numarg()>=2) { {nqa=$o1 idx=$2} if(idx < 0 || idx >= nqa.v.size) {printf("drarm ERRA: invalid index: %d,%d\n",idx,nqa.v.size) return} ex = nqa.v[9].x(idx) ey = nqa.v[10].x(idx) wx = nqa.v[3].x(idx) wy = nqa.v[4].x(idx) ang0 = nqa.v[1].x(idx) ang1 = nqa.v[2].x(idx) if(numarg()>=3) ers=$3 // if erase argument present if(DoLearn) { sprint(s.s,"t=%g: %g %g %s",nqa.v[0].x(idx),ang0,ang1) } else { sprint(s.s,"t=%g: %g %g",nqa.v[0].x(idx),ang0,ang1) } // if updated from current ePos and armPos } else { if(numarg()>=1) ers=$1 // if erase argument present if (invertAxis) { ex = -(shx+ePos.x) ey = -(shy+ePos.y) wx = -(shx+armPos.x) wy = -(shy+armPos.y) } else { ex = shx+ePos.x ey = shy+ePos.y wx = shx+armPos.x wy = shy+armPos.y } ang0 = armAng[0] ang1 = armAng[1] if(0 && DoLearn) { sprint(s.s,"t=%g: %g %g %s",t,ang0,ang1) //,ATYP.o(APHASE).s) } else { sprint(s.s,"t=%g: %g %g",t,ang0,ang1) } } // if(verbose) print "ex=",ex,"ey=",ey,"ang0=",ang0,"wx=",wx,"wy=",wy,"ang1=",ang1 if(ers) g.erase_all() drtarg() // draw an x for the target drline(shx,shy,ex,ey,g,2,4) // draw arm drline(ex,ey,wx,wy,g,3,4) if(DoAnim > 1) { if(NMUSCLES==2) { // draw the muscle lengths drline(3.1,0,3.1,MLen[0],g,2,3) drline(3.2,0,3.2,MLen[1],g,3,3) } else { drline(3.1,0,3.1,MLen[0],g,2,3) drline(3.2,0,3.2,MLen[2],g,3,3) } } // draw motor commands if(DoAnim > 2 && nqaupd!=nil) { {nqaupd.verbose=0 nqaupd.select("t","[)",t-mcmdspkwd-EMlag,t-EMlag)} she = nqaupd.getcol("shext").sum() / ( col.numc[EM] / 4 ) shf = nqaupd.getcol("shflex").sum() / ( col.numc[EM] / 4 ) ele = nqaupd.getcol("elext").sum() / ( col.numc[EM] / 4 ) elf = nqaupd.getcol("elflex").sum() / ( col.numc[EM] / 4 ) drline(0,-3.1,she,-3.1,g,2,3) drline(0,-3.1,-shf,-3.1,g,2,3) drline(0,-3.2,ele,-3.2,g,3,3) drline(0,-3.2,-elf,-3.2,g,3,3) {nqaupd.tog("DB") nqaupd.verbose=1} } g.label(0.55,0.95,s.s) g.flush() doNotify() } //* drxytraj - draws the x,y position from nqa proc drxytraj () { local gvt g=new Graph() g.size(0,tstop,0,2) {gvt=gvmarkflag gvmarkflag=0 g.erase if(nqa==nil) return} drarm() nqa.gr("y","x",0,2,1) g.exec_menu("View = plot") gvmarkflag=gvt } //* nqa2gif(nqa[,inc]) - saves arm locations in nqa as gif // inc specifies how many frames to skip proc nqa2gif () { local i,j,inc localobj nqa,s if(!FileExists("gif/wg")) system("mkdir gif/wg") nqa=$o1 s=new String() j=0 if(numarg()>1) inc=$2 else inc=1 for(i=0;i1) is=$2 else is=0 if(numarg()>2) ie=$3 else ie=nqa.v.size-1 if(numarg()>3) del=$4 else del=0.25e9 for i=is,ie { drarm(nqa,i) sleepfor(0,del) } } //* whirlgif(outputfile,framesglob[,delframes]) - makes a moving gif using whirlgif // delframes specifies whether to delete the gif frames after func whirlgif () { local del localobj s if(!FileExists("/usr/site/pkgs/download/whirlgif304/whirlgif")) { print "whirlgif ERR0: can't find whirlgif binary!" return 0 } if(numarg()>2) del=$3 else del=1 s=new String2() sprint(s.s,"/usr/site/pkgs/download/whirlgif304/whirlgif -globmap -o %s %s",$s1,$s2) system(s.s) if(del) {system("rm gif/wg/*.gif") printf("whirlgif WARN: deleted %s !\n",$s2)} return 1 } //* whirlnqa(nqa,file[,inc,delframes]) - nqa has arm trajectories // delframes specifies whether to delete the gif frames after func whirlnqa () { local i,del,inc localobj nqa nqa=$o1 if(numarg()>3)inc=$3 else inc=1 if(numarg()>2)del=$4 else del=1 nqa2gif(nqa,inc) return whirlgif($s2, "gif/wg/*.gif",del) } /* --------------------------------------------------*/ /* TRAINING/TESTING FUNCTIONS */ /* ---------------------------------------------------*/ //* calculateCenterPos(angle0, angle1) proc calculateCenterPos () {local dr0,dr1,ex,ey dr0 = $1 dr1 = $2 //print "dr0", dr0, "dr1", dr1 ex = armLen[0] * cos(dr0) // end of elbow ey = armLen[0] * sin(dr0) //print "ex", ex, "ey", ey sPos[0] = ex + armLen[1] * cos(dr0 + dr1) // target position for end of arm in x,y sPos[1] = ey + armLen[1] * sin(dr0 + dr1) //print "sPos0", sPos[0], "sPos1", sPos[1] } //* setTarg(angle0,angle1) - set target angle proc setTarg () { local dr0,dr1,ex,ey tAng[0] = deg2rad($1) tAng[1] = deg2rad($2) dr0 = tAng[0] // convert to radians dr1 = tAng[1] ex = armLen[0] * cos(dr0) // end of elbow ey = armLen[0] * sin(dr0) tPos.x = ex + armLen[1] * cos(dr0 + dr1) // target position for end of arm in x,y tPos.y = ey + armLen[1] * sin(dr0 + dr1) } //* setTargByID(targid) - sets target by code $1 - MODIFY ? proc setTargByID () { local tid /* Center out targets in joint angles * [[ 0.50551768, 1.38993546], [ 0.78660115, 1.5914252 ], [ 0.86059412, 1.0805086 ], [ 0.41088479, 1.88770502], [ 0.71390705, 1.13083334], [ 0.87861959, 1.28225856], [ 0.36748288, 1.69689411], [ 0.6047993 , 1.8411986 ]]) * * ([[ 0.45519364, 1.16293505], [ 0.9911765 , 1.57515715], [ 1.29295714, 0.20699215], [ 0.20234833, 2.19736336], [ 0.95196038, 0.47728848], [ 1.16275143, 0.92036049], [ 0.12116826, 1.78758638], [ 0.67440973, 2.09186399]]) */ tid=$1 // targets at 4cm * 2 * human(wrist)/monkey arm length if (centerOutTask==1) { if (tid == 0) { setTarg(rad2deg(0.45519364), rad2deg(1.16293505)) // right } else if (tid == 1) { setTarg(rad2deg(0.9911765), rad2deg(1.57515715)) // left } else if (tid == 2) { setTarg(rad2deg(1.29295714), rad2deg(0.20699215)) // top } else if (tid == 3) { setTarg( rad2deg(0.20234833), rad2deg(2.19736336)) // bottom } else if (tid == 4) { setTarg(rad2deg(0.95196038), rad2deg(0.47728848)) // right-top } else if (tid == 5) { setTarg(rad2deg(1.16275143), rad2deg(0.92036049)) // left-top } else if (tid == 6) { setTarg(rad2deg(0.12116826), rad2deg(1.78758638)) // left-bottom } else if (tid == 7) { setTarg(rad2deg(0.67440973) , rad2deg(2.09186399)) // right-bottom } // targets at 4cm * 1.5 * human(wrist)/monkey arm length } else if (centerOutTask==2) { if (tid == 0) { setTarg(rad2deg(0.47152101), rad2deg(1.2885104)) // right } else if (tid == 1) { setTarg(rad2deg(0.88510267), rad2deg(1.59300214)) // left } else if (tid == 2) { setTarg(rad2deg(1.01646978), rad2deg(0.77409105)) // top } else if (tid == 3) { setTarg( rad2deg(0.30815398), rad2deg(2.047338)) // bottom } else if (tid == 4) { setTarg(rad2deg(0.80110947), rad2deg(0.86659837)) // right-top } else if (tid == 5) { setTarg(rad2deg(1.01492911), rad2deg(1.12032497)) // left-top } else if (tid == 6) { setTarg(rad2deg(0.24298669), rad2deg(1.75186615)) // left-bottom } else if (tid == 7) { setTarg(rad2deg(0.62773373) , rad2deg(1.97372577)) // right-bottom } // targets at 4cm * 1 * human(finger tip)/monkey arm length } else if (centerOutTask==3) { if (tid == 0) { setTarg(rad2deg(0.45971385), rad2deg(1.49043484)) // right } else if (tid == 1) { setTarg(rad2deg(0.83499696), rad2deg(1.48894409)) // left } else if (tid == 2) { setTarg(rad2deg(0.93937918), rad2deg(1.04029084)) // top } else if (tid == 3) { setTarg( rad2deg(0.33628155), rad2deg(1.92189911)) // bottom } else if (tid == 4) { setTarg(rad2deg(0.73274572), rad2deg(1.18116696)) // right-top } else if (tid == 5) { setTarg(rad2deg(0.96793499), rad2deg(1.18003431)) // left-top } else if (tid == 6) { setTarg(rad2deg(0.28174105), rad2deg(1.79193016)) // left-bottom } else if (tid == 7) { setTarg(rad2deg(0.5882491) , rad2deg(1.79085662)) // right-bottom } // targets at 4cm * 1.5 * human(finger tip)/monkey arm length } else if (centerOutTask==4) { if (tid == 0) { setTarg(rad2deg(0.40384714), rad2deg(1.44023095)) // right } else if (tid == 1) { setTarg(rad2deg(0.95883405), rad2deg(1.43798272)) // left } else if (tid == 2) { setTarg(rad2deg(1.15383275), rad2deg(0.69393338)) // top } else if (tid == 3) { setTarg( rad2deg(0.19010291), rad2deg(2.10147419)) // bottom } } else { if (tid == 0) { setTarg(-15,135) // extreme flexion target } else if (tid == 1) { setTarg(-15,105) } else if (tid == 2) { setTarg(-15,75) // normal target } else if (tid == 3) { setTarg(-15,35) } else if (tid == 4) { setTarg(-15,0) // extreme extension target } else if (tid == 5) { setTarg(90,90) } else if (tid == 6) { setTarg(0,120) } else if (tid == 7) { setTarg(120,0) } else if (tid == 8) { setTarg(120,90) } else if (tid == 9) { setTarg(120,120) } else if (tid == 10) { setTarg(rad2deg(minang[0]),rad2deg(minang[1])) } else if (tid == 11) { setTarg(rad2deg(maxang[0]),rad2deg(maxang[1])) } else if (tid == 12) { setTarg(90,80) } else if (tid == 13) { setTarg(90,70) } else if (tid == 14) { setTarg(90,100) } else if (tid == 15) { setTarg(100,80) } else if (tid == 16) { setTarg(100,70) } else if (tid == 17) { setTarg(95,95) } else if (tid == 18) { setTarg(95,0) } else if (tid == 19) { setTarg(-10,95) } else print "setTargByID ERRA: unknown tid == ", tid , " ! " } } //* NRTrain(noisemin,noisemax,noisedec,dur) - runs training by gradually decreasing noise to EM cells proc NRTrain () { local i,j,dur,noisemax,noisemin,noisedec resetplast_INTF6=0 noisemin=$1 noisemax=$2 noisedec=$3 dur=$4 tstop = dur for(EMNoiseRate=noisemax;EMNoiseRate>=noisemin;EMNoiseRate-=noisedec) { SetEMNoiseRate(sgrhzEE=EMNoiseRate,0) for i=0,1 { if(i==0) { for j=0,1 sAng[j]=minang[j] print "EMNoiseRate = ", EMNoiseRate, ", start @ minang" } else { for j=0,1 sAng[j]=maxang[j] print "EMNoiseRate = ", EMNoiseRate, " start @ maxang" } run() pravgrates() } } } //* RandTrain(num locations, num iterations @ each location, duration for each iter of each location [,seed]) // performs training with random starting positions proc RandTrain () { local nlocs,i,j,dur,niter,se localobj rdm nlocs=$1 niter=$2 dur=$3 if(numarg()>2)se=$3 else se=213951 resetplast_INTF6=0 rdm=new Random() rdm.ACG(se) tstop = dur for i=0,nlocs-1 { print "location number " , i for j=0,1 sAng[j] = rdm.discunif(minang[j],maxang[j]) for j=0,niter-1 run() } } //* IterTrain(number of iterations, number of increments, duration for each starting position[,savew,incvrse]) proc IterTrain () { local nangs,i,j,k,dur,niter,savew,itmp,a localobj vinc,str,nqw,vrse a=allocvecs(vinc,vrse) vinc.resize(2) niter=$1 nangs=$2 dur=$3 resetplast_INTF6=0 if(numarg()>3) savew=$4 else savew=0 if(numarg()>4) incvrse=$5 else incvrse=1 if(incvrse){vrse.copy(col.cstim.vrse) itmp=initrands initrands=1} str=new String2() for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { print "iteration number " , i for j=0,1 sAng[j] = minang[j] if(incvrse) col.cstim.vrse.copy(vrse) // reset rand seeds to 1st for j=0,nangs { tstop = dur run() for k=0,1 { // increment starting position sAng[k] += vinc.x(k) if(sAng[k] > maxang[k]) sAng[k]=maxang[k] } if(incvrse) col.cstim.vrse.add(1) // increment random seeds for new stream of external inputs } if(savew) if(i%savew==0) { // save weights {sprint(str.s,"data/%s_IterTrain_plastnq_iter_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)} } } if(incvrse) {col.cstim.vrse.copy(vrse) initrands=itmp} // restore rand seeds dealloc(a) } //* IterTrain2D(number of iterations, number of increments, duration for each starting position) proc IterTrain2D () { local nangs,i,j,k,l,dur,niter,savew,a localobj vinc,str,nqw a=allocvecs(vinc) vinc.resize(2) niter=$1 nangs=$2 dur=$3 resetplast_INTF6=0 if(numarg()>3) savew=$4 else savew=0 str=new String2() for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { sAng[0]=minang[0] l=0 // subiteration counter for j=0,nangs { sAng[1]=minang[1] for k=0,nangs { print "train: iter ", i, ", subiter ", l tstop = dur initarm() run() sAng[1] += vinc.x(1) // inc elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] l += 1 // subiteration } sAng[0] += vinc.x(0) // inc shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } if(savew) if(i%savew==0) { // save weights {sprint(str.s,"data/%s_IterTrain2D_plastnq_iter_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)} } } dealloc(a) } //* IterTest(number of iterations, number of increments, duration for each starting position[,control,incvrse,svspks]) // NB: WHEN control==1, the weights will be reset to baseline, SO USE WITH CARE!!!!!!!!!!!!! // incvrse allows better control of sequence of random inputs - increments them by 1 for each iteration and then // restores them to initial value at the end. this way, control and trained networks can get same random streams // but also have variability in the streams (if number of iterations > 1). obfunc IterTest () { local ii,nangs,i,j,k,dur,niter,dltmp,ctl,incvrse,itmp,svspks,a localobj vinc,nqo,vrse,str a=allocvecs(vinc,vrse) vinc.resize(2) niter=$1 nangs=$2 dur=$3 if(numarg()>3) ctl=$4 else ctl=0 if(numarg()>4) incvrse=$5 else incvrse=1 if(numarg()>5) svspks=$6 else svspks=0 if(incvrse){vrse.copy(col.cstim.vrse) itmp=initrands initrands=1} str=new String() if(ctl) { print "IterTest WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 dltmp=DoLearn DoLearn=0 // turn off learning for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { for j=0,1 sAng[j] = minang[j] if(incvrse) col.cstim.vrse.copy(vrse) for j=0,nangs { print "test: iter ", i, ", subiter ", j tstop = dur run() {nqa.resize("iter") nqa.pad() nqa.v[nqa.m-1].fill(i)} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(j)} {nqa.resize("sAng0") nqa.pad() nqa.v[nqa.m-1].fill(sAng[0])} {nqa.resize("sAng1") nqa.pad() nqa.v[nqa.m-1].fill(sAng[1])} if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} if(svspks) { // save spikes? {CDX=0 mksnq() CDX=0} // make the NQS with spikes (snq) if(ctl) { sprint(str.s,"data/%s_iter_%d_subiter_%d_snq_control_A5.nqs",strv,i,j) } else { sprint(str.s,"data/%s_iter_%d_subiter_%d_snq_A5.nqs",strv,i,j) } snq.sv(str.s) } for k=0,1 { // increment starting position sAng[k] += vinc.x(k) if(sAng[k] > maxang[k]) sAng[k]=maxang[k] } if(incvrse) col.cstim.vrse.add(1) // increment random seeds for new stream of external inputs } } if(incvrse) {col.cstim.vrse.copy(vrse) initrands=itmp} // restore rand seeds {DoLearn=dltmp dealloc(a) return nqo} } //* AddCountCol(nqa) - add a column of spike counts to nqa. assumes arm in same position in the nqa. proc AddCountCol () { local i,j,tcind,mint,maxt,nc,a localobj nqa,vcnt,vrt {a=allocvecs(vcnt,vrt) nqa=$o1} nc = col[0].cellsnq.size() // get the number of cells from cellsnq mksnq() // make the NQS with spike info {nqa.tog("DB") nqa.resize("vcnt","vrt") nqa.odec("vcnt") nqa.odec("vrt") nqa.pad()} snq.verbose=0 vcnt.resize(nc) vrt.resize(nc) // Remember the column index for "t" in nqa. tcind = nqa.fi("t") // Loop over all the nqa entries... for i = 0, nqa.v.size-1 { // If we are in the first entry (t=0)... if (i == 0) { // Set spike counts and rates to all zeros. vcnt.resize(0) vcnt.resize(nc) vrt.resize(0) vrt.resize(nc) } else { // The minimum time is the previous nqa entry time, and the max. is the current entry. mint = nqa.v[tcind].x(i-1) maxt = nqa.v[tcind].x(i) // Loop over all cell indices... for j = 0, nc - 1 { // Count only those spikes from the right time interval and cell id. vcnt.x(j) = snq.select("id",j,"t","(]",mint,maxt) // Calculate the rate in spikes / s. vrt.x(j) = vcnt.x(j) * 1e3 / (maxt-mint) } } // Set the vcnt and vrt entries for this nqa entry. nqa.set("vcnt",i,vcnt) nqa.set("vrt",i,vrt) } snq.verbose=1 dealloc(a) } //* IterTest2D(number of iterations, number of increments, duration for each starting position[,control,savecounts,savespikes]) // NB: WHEN control==1, the weights will be reset to baseline, SO USE WITH CARE!!!!!!!!!!!!! // savecounts flag specifies whether to add a column to the output NQS that has # of spikes of each // cell at each position (a Vector column). when savespikes is true, a list is returned with two objects. the first // is the nqa and the second is a NQS with spikes for each subiteration. obfunc IterTest2D () { local ii,nangs,i,j,k,l,dur,niter,dltmp,ctl,savec,savespks,a localobj vinc,nqo a=allocvecs(vinc) vinc.resize(2) niter=$1 nangs=$2 dur=$3 if(numarg()>3) ctl=$4 else ctl=0 if(numarg()>4) savec=$5 else savec=0 if(numarg()>5) savespks=$6 else savespks=0 if(ctl) { print "IterTest2D WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 dltmp=DoLearn DoLearn=0 // turn off learning for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/nangs for i=0,niter-1 { sAng[0]=minang[0] l=0 // subiteration counter for j=0,nangs { sAng[1]=minang[1] for k=0,nangs { print "test: iter ", i, ", subiter ", l tstop = dur initarm() run() {nqa.resize("iter") nqa.pad() nqa.v[nqa.m-1].fill(i)} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(l)} {nqa.resize("sAng0") nqa.pad() nqa.v[nqa.m-1].fill(sAng[0])} {nqa.resize("sAng1") nqa.pad() nqa.v[nqa.m-1].fill(sAng[1])} if(savec) AddCountCol(nqa) if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} sAng[1] += vinc.x(1) // inc elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] l += 1 // subiteration } sAng[0] += vinc.x(0) // inc shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } } {DoLearn=dltmp dealloc(a) return nqo} } //* Eval(nq[,noiserate,getall]) - evaluate performance at 256 different positions - meant for short intervals to see if generates // correct motor commands - stores results in $o1 (nq) and returns the same nqs. first time Eval is called can // pass in a nil object. default noise rate is 0. if getall==1, it will store output at each location, regardless // of whether error was increasing or decreasing for that interval obfunc Eval () { local i,j,k,err0,err1,nr,getall,x0,y0,x1,y1,a localobj vinc,nq a=allocvecs(vinc) nq=$o1 if(nq==nil) nq=new NQS("sAng0","sAng1","err0","err1","x0","y0","x1","y1","sid","derr") else nq.clear() if(numarg()>1) nr=$2 else nr=0 if(numarg()>2) getall=$3 else getall=0 EMNoiseRate = sgrhzEE = nr SetEMNoiseRate(EMNoiseRate,0) // set noise to EM cells DoLearn=0 // turn off learning vinc.resize(2) for i=0,1 vinc.x(i) = (maxang[i]-minang[i])/15 sAng[0]=minang[0] k=0 for i=0,15 { sAng[1]=minang[1] for j=0,15 { rotArmTo(sAng[0],sAng[1]) {err0=getArmErr() x0=armPos.x y0=armPos.y} run() {err1=getArmErr() x1=armPos.x y1=armPos.y} if(verbosearm) print "Eval:",sAng[0]," , ",sAng[1]," err0: ",err0,", err1: ",err1 if(getall || (err1 >= err0 && err0 > 0)) nq.append(sAng[0],sAng[1],err0,err1,x0,y0,x1,y1,k,err1-err0) sAng[1] += vinc.x(1) // inc starting elbow angle if(sAng[1] > maxang[1]) sAng[1]=maxang[1] k += 1 } sAng[0] += vinc.x(0) // inc starting shoulder angle if(sAng[0] > maxang[0]) sAng[0]=maxang[0] } dealloc(a) return nq } //* TrainAndEval([noiseratelearn,noiserateeval,durtrain,dureval,maxi,savew,evall,dureval2]) - does training from 256 positions // and saving weights and evaluations after each iteration. // noiseratelearn is noise rate for learning mode and noiserateeval is noise rate for // evaluation mode. noiseratelearn default is 200, noiserateeval default is 0. this procedure is meant for // training using short durations (durlearn) for each iteration (default is 400 ms). dureval is the duration // for eavaluation starting from each location. maxi is max # of iterations // of train+eval. default is maxi of 0, which means keeps going until perfect learning attained (non-advisable, // as it may never terminate). when savew>0 the intermediate weights will be saved every savew sessions. the global strv // variable will then be used to determine the filenames to save to. trall determines whether to train on all starting positions // or just those that have incorrect evaluations on last iteration. obfunc TrainAndEval () { local i,j,durlearn,dureval,noiseratelearn,noiserateeval,maxi,savew,trall,dureval2\ localobj nqe,nqo,nqtmp,str,nqw if(numarg()>0) noiseratelearn=$1 else noiseratelearn=200 if(numarg()>1) noiserateeval=$2 else noiserateeval=0 if(numarg()>2) durlearn=$3 else durlearn=500 if(numarg()>3) dureval=$4 else dureval=100 if(numarg()>4) maxi=$5 else maxi=200 if(numarg()>5) savew=$6 else savew=25 if(numarg()>6) trall=$7 else trall=1 if(numarg()>7) dureval2=$8 else dureval2=30e3 {str=new String2() i=0} tstop=1 nqtmp=Eval(nqtmp,noiserateeval,1)//learning is turned off in Eval and noiserate is set to noiserateeval {nqe=new NQS() nqe.cp(nqtmp) nqe.resize("session") nqe.pad() nqe.v[nqe.m-1].fill(-1)} i+=1 // 1 is first training print "did pre-eval" while((i<=maxi || maxi<=0) && nqe.v.size>0) { print "session ", i , " nqe.v.size = " , nqe.v.size DoLearn = 4 tstop=durlearn EMNoiseRate = sgrhzEE = noiseratelearn SetEMNoiseRate(EMNoiseRate,0) for j=0,nqtmp.v.size-1 if(trall || (nqtmp.v[3].x(j)>=nqtmp.v[2].x(j) && nqtmp.v[2].x(j)>0)) { sAng[0] = nqtmp.v[0].x(j) sAng[1] = nqtmp.v[1].x(j) run() } if(savew) if(i%savew==0 || i==1) {// save weights & do evaluations print "Evaluating progress..." tstop=dureval {nqsdel(nqtmp) nqtmp=Eval(nqtmp,noiserateeval,1)} {nqtmp.resize("session") nqtmp.pad() nqtmp.v[nqtmp.m-1].fill(i) nqe.append(nqtmp)} if(dureval2>0) { // do long-term evaluation and save output (trajectory and spikes) tstop=dureval2 print "minang long-term eval..." {sAng[0]=minang[0] sAng[1]=minang[1] run()} {sprint(str.s,"data/%s_minang_nqa_session_%d_.nqs",strv,i) nqa.sv(str.s)} {CDX=0 mksnq() CDX=0 sprint(str.s,"data/%s_minang_snq_session_%d_.nqs",strv,i) snq.sv(str.s)} print "maxang long-term eval..." {sAng[0]=maxang[0] sAng[1]=maxang[1] run()} {sprint(str.s,"data/%s_maxang_nqa_session_%d_.nqs",strv,i) nqa.sv(str.s)} {CDX=0 mksnq() CDX=0 sprint(str.s,"data/%s_maxang_snq_session_%d_.nqs",strv,i) snq.sv(str.s)} } {sprint(str.s,"data/%s_plastnq_session_%d_.nqs",strv,i) nqw=getplastnq(col[0]) nqw.sv(str.s) nqsdel(nqw)}//save weights } i += 1 } return nqe } //* MultTargTrain(nqc,iters,dur) - performs multiple target training. starting position is middle angle. // nqc must have 2 columns: targid and vrse. targid is target id. vrse is corresponding vector of random // seeds that are copied over to col.cstim.vrse before the run. initrands will be set to 1 so that the // Random objects are initialized properly. proc MultTargTrain () { local i,j,dur,iters localobj nqc,str {initrands=1 nqc=$o1 iters=$2 dur=tstop=$3 resetplast_INTF6=0} for i=0,1 sAng[i] = minang[i] + (maxang[i]-minang[i]) / 2 // start in the middle for i=0,iters-1 { for j=0,nqc.v.size-1 { setTargByID(targid=nqc.v.x(j)) col.cstim.vrse.copy(nqc.get("vrse",j).o) print "train: targid is " , targid, " iter " , i run() } } } //* multtargtrainsv(strv,iters,dur) proc multtargtrainsv () { local dur,iters,a localobj nqc,str,vorig,vtmp a=allocvecs(vorig,vtmp) vorig.copy(col.cstim.vrse) // copy the current random seeds str=new String2() sprint(str.s,"data/%s_",$s1) // base path for output files {nqc=new NQS("targid","vrse") nqc.odec("vrse")} nqc.append(10,col.cstim.vrse) // targ at minima in both angles vtmp.copy(col.cstim.vrse) // this assumes col.cstim.vrse wasn't messed with {vtmp.add(10) nqc.append(11,vtmp)} // targ at maxima in both angles iters=$2 dur=tstop=$3 MultTargTrain(nqc,iters,dur) // does the training sprint(str.t,"%s_multtarg_plastnq_B1.nqs",str.s) {nq=getplastnq(col[0]) nq.sv(str.t) nqsdel(nq)} col.cstim.vrse.copy(vorig) // restore the origina random seeds {sprint(str.t,"%s_multtarg_nqs_B2.nqs",str.s) nqc.sv(str.t)} {dealloc(a) nqsdel(nqc)} } //* MultTargTest(nqc,dur[,control,svspks]) - does testing of mult target sim // nqc has the random seeds used as a cue. returns nqs with trajectories // for the different cues. this function assumes arm starts in midpoint of // both of its angles obfunc MultTargTest () { local i,dur,ctl,itmp,dltmp,svspks,a localobj nq,nqc,vec,vrse,nqo,str a=allocvecs(vrse,vec) nqc=$o1 dur=tstop=$2 if(numarg()>2) ctl=$3 else ctl=0 if(numarg()>3) svspks=$4 else svspks=0 str=new String2() if(ctl) { print "MultTargTest WARNING: reset weights to baseline!" resetplast_INTF6=1 } else resetplast_INTF6=0 vrse.copy(col.cstim.vrse) // backup the seeds dltmp=DoLearn DoLearn=0 // turn off learning itmp=initrands initrands=1 for i=0,1 sAng[i] = minang[i] + (maxang[i]-minang[i]) / 2 // start in the middle for i=0,nqc.v.size-1 { setTargByID(targid=nqc.v.x(i)) print "targ " , targid col.cstim.vrse.copy(nqc.get("vrse",i).o) run() {nqa.resize("targid") nqa.pad() nqa.v[nqa.m-1].fill(targid)} {nqa.resize("tAng0") nqa.pad() nqa.v[nqa.m-1].fill(tAng[0])} {nqa.resize("tAng1") nqa.pad() nqa.v[nqa.m-1].fill(tAng[1])} {nqa.resize("subiter") nqa.pad() nqa.v[nqa.m-1].fill(i)} if(nqo==nil) {nqo=new NQS() nqo.cp(nqa)} else {nqo.append(nqa)} if(svspks) { // save spikes? {CDX=0 mksnq() CDX=0} // make the NQS with spikes (snq) if(ctl) { sprint(str.s,"data/%s_multtarg_subiter_%d_snq_control_B5.nqs",strv,i) } else { sprint(str.s,"data/%s_multtarg_subiter_%d_snq_B5.nqs",strv,i) } snq.sv(str.s) } } {DoLearn=dltmp initrands=itmp col.cstim.vrse.copy(vrse) dealloc(a) return nqo} } //* multtargtestsv(simstr[,dur,twod,skipc,svspks]) - run mult targ testing and save output // iff skipc==1 , skip control. // see MultTargTest for more details. svspks - save the snq spike NQS for each subiteration of MultTargTest? uses // strv and iter,subiter,etc. information for the output filename. proc multtargtestsv () { local iters,nl,dur,twod,c,skipc,svspks localobj str,nq,nqc DoLearn = syDT = 0 str=new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s__multtarg_plastnq_B1.nqs",str.s) {nq=new NQS(str.t) setplastnq(nq,col[0]) nqsdel(nq)}// this loads the learned weights print "loaded weights from ", str.t {sprint(str.t,"%s__multtarg_nqs_B2.nqs",str.s) nqc=new NQS(str.t)} print "loaded vrse from " , str.t if(numarg()>1) dur=$2 else dur=30e3 if(numarg()>2) twod=$3 else twod=0 if(numarg()>3) skipc=$4 else skipc=0 if(numarg()>4) svspks=$5 else svspks=0 for c=0,1 { if(skipc && c==1) continue if(twod) { //nq=IterTest2D(iters,nl,dur,c) //if(HoldStill) addhyperrcols(nq) // add the hypothetical moves if running with HoldStill==1 //if(c==0) sprint(str.t,"%s_itertest2D_A3.nqs",str.s) else sprint(str.t,"%s_itertest2D_control_A4.nqs",str.s) } else { nq=MultTargTest(nqc,dur,c,svspks) if(c==0) sprint(str.t,"%s_MultTargTest1D_B3.nqs",str.s) else sprint(str.t,"%s_MultTargTest1D_control_B4.nqs",str.s) } nq.sv(str.t) print "saved ", str.t nqsdel(nq) } nqsdel(nqc) } //* addhyperrcols(nqs from IterTest or IterTest2D) - adds hypothetical moves/errors from // a IterTest with HoldStill==1, to see what the output moves would be // with fixed positions and then to calculate the errors proc addhyperrcols () { local i,s0,s1,errsh,errel,errp,sx,sy,nx,ny,err0,err1,dx,dy localobj nqo nqo=$o1 nqo.tog("DB") if(nqo.fi("dy")==-1) { nqo.resize("dirsh","direl","errsh","errel","errp","errxy","dx","dy") nqo.pad() } for i=0,nqo.v.size-1 { dirsh = nqo.getcol("shflex").x(i) - nqo.getcol("shext").x(i) // shoulder rot command direl = nqo.getcol("elflex").x(i) - nqo.getcol("elext").x(i) // elbow rot command s0 = nqo.getcol("sAng0").x(i) // starting angle s1 = nqo.getcol("sAng1").x(i) if(abs(s0 + dirsh - tAng[0] ) < abs(s0 - tAng[0])) { errsh = -abs(dirsh) // angular error was reduced } else errsh = abs(dirsh) // angular error was increased if(abs(s1 + direl - tAng[1] ) < abs(s1 - tAng[1])) { errel = -abs(direl) // angular error was reduced } else errel = abs(direl) // angular error was increased errp = errsh + errel sx = armLen[0] * cos(s0) + armLen[1] * cos(s0+s1) // get starting x sy = armLen[0] * sin(s0) + armLen[1] * sin(s0+s1) // get starting y err0 = sqrt( (sx-tPos.x)^2 + (sy-tPos.y)^2) // starting error nx = armLen[0] * cos((s0+dirsh)) + armLen[1] * cos((s0+dirsh) + (s1+direl)) // get next x ny = armLen[0] * sin((s0+dirsh)) + armLen[1] * sin((s0+dirsh)+(s1+direl)) // get next y err1 = sqrt( (nx-tPos.x)^2 + (ny-tPos.y)^2) // error after hypothetical move if(err10)ct=$1 else ct=DP if(numarg()>1)cdx=$2 else cdx=0 if(ct==DP) nqrf.resize("mid","ml") if(snq[cdx]==nil) {i=CDX CDX=cdx mksnq() CDX=i} nqrf.clear(snq[cdx].select("type",DP)) snq[cdx].tog("DB") nqa.tog("DB") nqa.verbose=snq[cdx].verbose=0 tdx=0 // starting time tt=snq[cdx].getcol("t").x(0) // get first spike time for i=1,nqa.v.size-1 { // loop through all arm updates if(i%10==0)printf(".") while(tt < nqa.getcol("t").x(i) && tdx < snq[cdx].v.size) { // while spike time tt is within time of current arm update if(snq[cdx].getcol("type").x(tdx)==ct) { // if the spike was from a cell type ct (eg. DP) id=snq[cdx].getcol("id").x(tdx) ang0=nqa.getcol("ang0").x(i-1) ang1=nqa.getcol("ang1").x(i-1) // cedp.o(id).subtype if(ct==DP) { mid=cedp.o(id-col[cdx].ix[ct]).zloc ml=nqa.v[mid+12].x(i-1) nqrf.append(i-1,id,ct,ang0,ang1,nqa.v[12].x(i-1),nqa.v[13].x(i-1),nqa.v[14].x(i-1),nqa.v[15].x(i-1),tt,mid,ml) } else { nqrf.append(i-1,id,ct,ang0,ang1,nqa.v[12].x(i-1),nqa.v[13].x(i-1),nqa.v[14].x(i-1),nqa.v[15].x(i-1),tt) } } tdx += 1 if(tdx2)nrm=$3 else nrm=1 a=allocvecs(vx,vy,vcnt) vrsz(nq.getcol("x").uniq,vx,vy) nq.getcol("x").uniq(vx) nq.getcol("y").uniq(vy) nqrf=new NQS("x","y","cnt") for i=0,nq.v.size-1 { x = nq.getcol("x").x(i) y = nq.getcol("y").x(i) cnt=nq.get("vcnt",i).o.x(id) if(nqrf.select(-1,"x",x,"y",y)) { nqrf.v[2].x(nqrf.ind.x(0)) += cnt } else nqrf.append(x,y,cnt) } dealloc(a) if(nrm) nqrf.getcol("cnt").div(nqrf.getcol("cnt").max()) return nqrf } //* drcellrf(nqs from getcellrf[,sz]) - draws the count per position using data from the nqs // green dots are starting x,y . blue is ending. red line height is # spikes @ x,y. // sz is the height,width of markers for the x,y positions // the nqs ($o1) is obtained from getcellrf proc drcellrf () { local i,x,y,n,sz localobj nqr nqr=$o1 if(numarg()>1)sz=$2 else sz=0.01 for i=0,nqr.v.size-1 { x = nqr.v[0].x(i) y = nqr.v[1].x(i) n = nqr.v[2].x(i) drline(x,y,x,y+n,g,2,3) drline(x-sz,y-sz,x+sz,y-sz,g,4,3) drline(x-sz,y+n+sz,x+sz,y+n+sz,g,3,3) } } //* drerrRL - draw error and reinforcement signal proc drerrRL () { local gvt g=new Graph() g.size(0,tstop,-1,3.5) gvt=gvmarkflag gvmarkflag=1 nqaupd.gr("reinf","t",0,2,12) // reinforcement signal in red nqa.gr("errxy","t",0,3,12) // cartesian error in blue nqa.gr("errang","t",0,4,12) // angular error in green gvmarkflag=0 nqaupd.gr("reinf","t",0,2,4) // reinforcement signal in red nqa.gr("errxy","t",0,3,4) // cartesian error in blue nqa.gr("errang","t",0,4,12) // angular error in green gvmarkflag=gvt } //* drelbowtrajectory([linestyle,erase]) -- show the elbows trajectory vs. the target angle proc drelbowtrajectory () { local ln,ers if(numarg()>0) ln=$1 else ln=1 if(numarg()>1) ers=$2 else ers=0 if(ers) g.erase_all() drline(0,minang[1],t,minang[1],g,1,5) drline(0,maxang[1],t,maxang[1],g,1,5) nqa.gr("ang1","t",0,3,ln) drline(0,tAng[1],tstop,tAng[1],g,3,5) } //* drshouldertrajectory([linestyle,erase]) -- show the shoulder's trajectory vs. the target angle proc drshouldertrajectory () { local ln,ers if(numarg()>0) ln=$1 else ln=1 if(numarg()>1) ers=$2 else ers=0 if(ers) g.erase_all() drline(0,minang[0],t,minang[0],g,9,5) drline(0,maxang[0],t,maxang[0],g,9,5) nqa.gr("ang0","t",0,2,ln) drline(0,tAng[0],tstop,tAng[0],g,2,5) } //* addnqacol2nqaupd proc addnqacol2nqaupd () { local nqcnum,nqcnum2,nqcnum3,nqaind,ii nqaupd.resize($s1) // add column to look at nqcnum = nqaupd.fi($s1) nqcnum2 = nqaupd.fi("mvmt") nqcnum3 = nqa.fi($s1) nqaupd.v[nqcnum].resize(nqaupd.v.size) // pad the column with zeros nqaind = -1 for ii=0,nqaupd.v.size-1 { if ((nqaupd.v[nqcnum2].x(ii) != -1) && (nqaupd.v[nqcnum2].x(ii) != nqaind)) { nqaind = nqaupd.v[nqcnum2].x(ii) } nqaupd.v[nqcnum].x(ii) = nqa.v[nqcnum3].x(nqaind) } } //* getavgsyvst(nqsy,ty1,ty2[,CDX]) - get average synaptic weight vs time obfunc getavgsyvst () { local i,ty1,ty2,cdx localobj ls,vt,vwg,nqsy nqsy=$o1 ty1=$2 ty2=$3 if(numarg()>3) cdx=$4 else cdx=0 ls=new List() ls.append(vt=new Vector(nqsy.v.size)) ls.append(vwg=new Vector(nqsy.v.size)) vwg.resize(0) nqsy.tog("DB") nqsy.getcol("t").uniq(vt) nqsy.verbose=0 for vtr(&i,vt) if(nqsy.select("t",i,"id1","[]",col[cdx].ix[ty1],col[cdx].ixe[ty1],"id2","[]",col[cdx].ix[ty2],col[cdx].ixe[ty2])) { vwg.append(nqsy.getcol("wg").mean) } nqsy.verbose=1 return ls // return list with vector of times and average weights } //* mkavgsyvst(nqsy) proc mkavgsyvst () { local i,j localobj str //,nqsy str=new String() //nqsy=$o1 if (syCTYP == 1) { for case(&i,ES) for case(&j,EM) if(pmat[0][0][i][j]) { print CTYP.o(i).s,"->",CTYP.o(j).s lssyavg[i][j] = getavgsyvst(nqsy,i,j) sprint(str.s,"%s->%s",CTYP.o(i).s,CTYP.o(j).s) lssyavg[i][j].o(1).label(str.s) } } else if (syCTYP == 2) { for case(&i,ES,EM) for case(&j,ES,IS,ISL,EM,IM,IML) if(pmat[0][0][i][j]) { print CTYP.o(i).s,"->",CTYP.o(j).s lssyavg[i][j] = getavgsyvst(nqsy,i,j) sprint(str.s,"%s->%s",CTYP.o(i).s,CTYP.o(j).s) lssyavg[i][j].o(1).label(str.s) } } } //* plotsyvst - plot average synaptic weight change vs time proc plotavgsyvst () { local i,j,k localobj str g=new Graph() g.size(0,tstop,0,4) k=0 if (syCTYP == 1) { for case(&i,ES) for case(&j,EM) if(pmat[0][0][i][j]) { sprint(tstr,"%s->%s",CTYP.o(i).s,CTYP.o(j).s) lssyavg[i][j].o(1).label(tstr) lssyavg[i][j].o(1).plot(g,lssyavg[i][j].o(0),k+1,1) k+=1 } } else if (syCTYP == 2) { for case(&i,ES,EM) for case(&j,ES,IS,ISL,EM,IM,IML,DP) if(pmat[0][0][i][j]) { sprint(tstr,"%s->%s",CTYP.o(i).s,CTYP.o(j).s) lssyavg[i][j].o(1).label(tstr) lssyavg[i][j].o(1).plot(g,lssyavg[i][j].o(0),k+1,1) k+=1 // if run out of colors, change to dotted lines if (k == 9) { k =0 gvmarkflag=1 } } } } //* drnqEval(nqs from Eval function[, scale]) - draws vectors from Eval, red for lines that decrease error // gray for lines that increased it proc drnqEval () { local eidx,i,dx,dy,x0,y0,x1,y1,xsz,scale,e0,e1,a localobj vx1,vy1,vx2,vy2,nq nq=$o1 if(numarg()>1)scale=$2 else scale=1 {a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} {rotArmTo(tAng[0],tAng[1]) drarm()} {nq.verbose=0 nq.tog("DB") eidx=nq.v.size-1} for i=0,eidx { x0 = nq.getcol("x0").x(i) y0 = nq.getcol("y0").x(i) x1 = nq.getcol("x1").x(i) y1 = nq.getcol("y1").x(i) dx = (x1 - x0) * scale dy = (y1 - y0) * scale e0 = nq.getcol("err0").x(i) e1 = nq.getcol("err1").x(i) if(e0 > e1) { drline(x0,y0,x0+dx,y0+dy,g,2,3) } else drline(x0,y0,x0+dx,y0+dy,g,9,3) {vx1.append(x0) vy1.append(y0) vx2.append(x1) vy2.append(y1)} } nq.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) xsz=0.1 drline(tPos.x-xsz,tPos.y-xsz,tPos.x+xsz,tPos.y+xsz,g,1,4) // draw an x for the target drline(tPos.x-xsz,tPos.y+xsz,tPos.x+xsz,tPos.y-xsz,g,1,4) dealloc(a) } /* --------------------------------------------------------------------------*/ /* ANALYSIS FUNCTIONS -- NOT ADAPTED TO MS ARM*/ /* --------------------------------------------------------------------------*/ //* drxyvecfield(nqo[,scale]) - draw xy trajectory from IterTest or IterTest2D NQS // that had addhyperrefcol called on it - this NQS should be generated // post learning with HoldStill set to 1. scale sets scaling for vectors (default==1) proc drxyvecfield () { local eidx,i,x0,y0,x1,y1,xsz,scale,err0,err1,clr,a localobj vx1,vy1,vx2,vy2,nqo g=new Graph() ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) nqo=$o1 if(numarg()>1)scale=$2 else scale=1 {a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} //{rotArmTo(tAng[0],tAng[1]) drarm()} {nqo.verbose=0 nqo.tog("DB") eidx=nqo.getcol("subiter").max()} for i=0,eidx if(nqo.select("subiter",i)) { x0 = nqo.getcol("x").mean() y0 = nqo.getcol("y").mean() err0 = sqrt((x0-tPos.x)^2+(y0-tPos.y)^2) x1 = x0 + nqo.getcol("dx").mean() // without scale for err calc y1 = y0 + nqo.getcol("dy").mean() err1 = sqrt((x1-tPos.x)^2+(y1-tPos.y)^2) if(err1<=err0) clr=2 else clr=9 x1 = x0 + nqo.getcol("dx").mean() * scale // with scale for drawing y1 = y0 + nqo.getcol("dy").mean() * scale drline(x0,y0,x1,y1,g,clr,3) {vx1.append(x0) vy1.append(y0) vx2.append(x1) vy2.append(y1)} } nqo.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) xsz=0.01 drline(tPos.x-xsz,tPos.y-xsz,tPos.x+xsz,tPos.y+xsz,g,1,4) // draw an x for the target drline(tPos.x-xsz,tPos.y+xsz,tPos.x+xsz,tPos.y-xsz,g,1,4) dealloc(a) } //* drrotvecfield(nqo[,xsz,scale]) - draw angular trajectory from IterTest or IterTest2D NQS // that had addhyperrefcol called on it - this NQS should be generated // post learning with HoldStill set to 1. xsz is size of target proc drrotvecfield () { local eidx,i,s0,s1,n0,n1,xsz,scale,a localobj vx1,vy1,vx2,vy2,nqo {nqo=$o1 a=allocvecs(vx1,vx2,vy1,vy2) vrsz(0,vx1,vx2,vy1,vy2)} {nqo.verbose=0 nqo.tog("DB") eidx=nqo.getcol("subiter").max()} if(numarg()>1)xsz=$2 else xsz=5 if(numarg()>2)scale=$3 else scale=1 for i=0,eidx if(nqo.select("subiter",i)) { s0 = nqo.getcol("sAng0").mean() s1 = nqo.getcol("sAng1").mean() n0 = s0 + nqo.getcol("dirsh").mean() * scale n1 = s1 + nqo.getcol("direl").mean() * scale drline(s0,s1,n0,n1,g,2,3) {vx1.append(s0) vy1.append(s1) vx2.append(n0) vy2.append(n1)} } nqo.verbose=1 vy1.mark(g,vx1,"O",6,4,1) // start (green) vy2.mark(g,vx2,"O",6,3,1) // end (blue) if(numarg()>1) xsz=$2 else xsz=5 drline(tAng[0]-xsz,tAng[1]-xsz,tAng[0]+xsz,tAng[1]+xsz,g,1,4) // draw an x for the target drline(tAng[0]-xsz,tAng[1]+xsz,tAng[0]+xsz,tAng[1]-xsz,g,1,4) dealloc(a) } //* DPatang(shoulder angle,elbow angle) - get Vector of DP cell IDs activated at the particular angles - obfunc DPatang () { local i,a0,a1,rel_shang, rel_elang localobj vid,c vid=new Vector() a0=$1 a1=$2 // a0 is shoulder, a1 is elbow angle if(verbosearm) print "WARN: rotated to ", a0, a1 //cannot rotate arm so need way of mapping joint angles to muscle lengths //rotArmTo(a0,a1) // rotate arm to target angle so can check muscle length activations rel_shang= (a0-minang[0])/(maxang[0]-minang[0]) // relative shoulder angle (0-1) rel_elang= (a1-minang[1])/(maxang[1]-minang[1]) // relative shoulder angle (0-1) MLen[0] = minMLen[0] + (maxMLen[0]-minMLen[0])*(1-rel_shang) // sh ext MLen[1] = minMLen[1] + (maxMLen[1]-minMLen[1])*rel_shang // sh flex MLen[2] = minMLen[2] + (maxMLen[2]-minMLen[2])*(1-rel_elang) // el ext MLen[3] = minMLen[3] + (maxMLen[3]-minMLen[3])*rel_elang // el flex for ltr(c,cedp) { // go thru each DP cell if(MLen[c.zloc] >= c.mlenmin && MLen[c.zloc] <= c.mlenmax) { // check each DP cell's muscle activation vid.append(c.id) // save the cell's id } } return vid // return the Vector of IDs } //* ESatang(shoulder angle,elbow angle) - get Vector of ES cell IDs activated at the particular angles obfunc ESatang () { local a,id1,id2,i,a0,a1 localobj vid,vidu,vDP,c a=allocvecs(vid) vidu=new Vector() a0=$1 a1=$2 vDP = DPatang(a0,a1) // first get DP cells activated at the angle, then see which ES cells they project to col.connsnq.verbose=0 for vtr(&id1,vDP) if(col.connsnq.select("id1",id1,"id2","[]",col.ix[ES],col.ixe[ES])) { vid.append(col.connsnq.getcol("id2")) } col.connsnq.verbose=1 vidu.resize(vid.size) vid.uniq(vidu) // get rid of duplicate ES cell IDs dealloc(a) return vidu // return the IDs } //* EMatang(shoulder angle,elbow angle) - get Vector of EM cell IDs activated at the particular angles obfunc EMatang () { local a,id1,id2,i,a0,a1 localobj vid,vidu,vES,c a=allocvecs(vid) vidu=new Vector() a0=$1 a1=$2 vES = ESatang(a0,a1) // first get the ES cells activated at the angle, then see which EM cells they project to col.connsnq.verbose=0 for vtr(&id1,vES) { // go thru presynaptic ES cells & check which EM cells they project to if(col.connsnq.select("id1",id1,"id2","[]",col.ix[EM],col.ixe[EM])){//use connectivity NQS for projections vid.append(col.connsnq.getcol("id2")) // save the IDs } } col.connsnq.verbose=1 vidu.resize(vid.size) vid.uniq(vidu) // get rid of duplicate EM cell IDs dealloc(a) return vidu // return the IDs } //* MCMDatang(shoulder angle,elbow angle) - motor command at angle - gets motor command based on which EM cells activated obfunc MSMCMDatang () { local a,id1,id2,i,a0,a1,fctr localobj vidm,vcmd,vem scaling = 0.05 // excitation to angle change factor vcmd=new Vector(4) a0=$1 a1=$2 vidm=EMatang(a0,a1) // get which EM cells activated at the angle for vtr(&id1,vidm) vcmd.x(nqE.v[3].x(id1-col.ix[EM]))+=1 vcmd.x(0) = scaling*(vcmd.x(1)/vEMmax - vcmd.x(0)/vEMmax) vcmd.x(1) = scaling*(vcmd.x(3)/vEMmax - vcmd.x(2)/vEMmax) vcmd.resize(2) return vcmd } //* MSMCMDmapnq2([angle increment]) - get an NQS with motor command for each angle pair // just uses static connectivity from DP -> ES -> EM // adapted to muscskel arm: x1 and y1 calculated approximately obfunc MSMCMDmapnq2 () { local a0,a1,inc,x0,y0,x1,y1 localobj vcmd,nq if(numarg()>0) inc=$1 else inc=0.2 nq=new NQS("a0","a1","x0","y0","x1","y1","dsh","del") for(a0=0;a0<=maxang[0];a0+=inc) { for(a1=0;a1<=maxang[1];a1+=inc) { // calcualate initial position at ang a0,a1 ePos.x = armLen[0] * cos(a0) // end of elbow ePos.y = armLen[0] * sin(a0) armPos.x = ePos.x + armLen[1] * cos(a0 + a1) // wrist=arm position armPos.y = ePos.y + armLen[1] * sin(a0 + a1) x0 = armPos.x y0 = armPos.y // obtain EM command at ang a0,a1 // command already approximated as joint angle change in radians vcmd=MSMCMDatang(a0,a1) // calculate end position after EM command // only approx: doesn't take into account complex internal dynamis of muscskel arm a0cmd = a0 + vcmd.x(0) a1cmd =a1 + vcmd.x(1) ePos.x = armLen[0] * cos(a0cmd) // end of elbow ePos.y = armLen[0] * sin(a0cmd) armPos.x = ePos.x + armLen[1] * cos(a0cmd + a1cmd) // wrist=arm position armPos.y = ePos.y + armLen[1] * sin(a0cmd + a1cmd) x1 = armPos.x y1 = armPos.y nq.append(a0,a1,x0,y0,x1,y1,vcmd.x(0),vcmd.x(1)) } } return nq } //* MSMCMDmapnq([angle increment]) - get an NQS with motor command for each angle pair // just uses static connectivity from DP -> ES -> EM // this function has been adapted from the musculoskeletal arm -- it uses the nqa table to find the appropriate values obfunc MSMCMDmapnq () { local a0,a1,inc,x0,y0,x1,y1,tmax,interval localobj vcmd,nq if(numarg()>0) inc=$1 else inc=0.1 angInterval = inc/10 tInterval = 10 nq=new NQS("a0","a1","x0","y0","x1","y1") nqa.verbose = 0 for(a0=0;a0<=maxang[0];a0+=inc) { for(a1=0;a1<=maxang[1];a1+=inc) { if (nqa.select("ang0","[]",a0-angInterval, a0+angInterval,"ang1","[]",a1-angInterval,a1+angInterval)) { // find rows in nqa that match desired angles if (nqa.size() > 1) { tmax=nqa.stat("t","max") // find row with latest time nqa.select("t","==",tmax) } else tmax = nqa.fetch("t") x0=nqa.fetch("x") y0=nqa.fetch("y") nqa.select("t","==",tmax+tInterval) x1=nqa.fetch("x") y1=nqa.fetch("y") nq.append(a0,a1,x0,y0,x1,y1) } } } return nq } //* drMCMDmapnq(nqs from MCMDmapnq) - draws the NQS proc drMCMDmapnq () { local x0,y0,x1,y1,i localobj nq g=new Graph() ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) nq=$o1 nq.verbose=0 nq.tog("DB") gvmarkflag=1 nq.gr("y0","x0",0,4,4) for i=0,nq.v.size-1 { x0 = nq.getcol("x0").x(i) y0 = nq.getcol("y0").x(i) x1 = nq.getcol("x1").x(i) y1 = nq.getcol("y1").x(i) drline(x0,y0,x1,y1,g,2,3) } nq.gr("y1","x1",0,3,4) nq.verbose=1 } /* --------------------------------------------------*/ /* RUN AND SAVE FUNCTIONS */ /* ---------------------------------------------------*/ //* run and init nqs objects proc myrun () { local i localobj xo run() // Do the normal run. // For all of the columns, make spike NQS tables, snq[]. for CDX=0,numcols-1 { {nqsdel(snq[CDX]) snq[CDX]=SpikeNQS(vit[CDX].tvec,vit[CDX].vec,col[CDX])} snq[CDX].marksym="O" print "CDX:",CDX pravgrates() // Show average firing rates for each column. } CDX=0 // Load the analysis tables for column 1. if(numarg()>0) initMyNQs() // make all of the usual analysis tables. // initAllMyNQs() // make all of the desired synaptic weights. if(syDT) mkavgsyvst(nqsy) } //* mysv - save output after myrun proc mysv () { localobj s,nq s = new String() CDX=0 // Save the snq for column 1. sprint(s.s,"data/%s_%s_snq.nqs",$s1,col[CDX].name) {snq[CDX].tog("DB") snq[CDX].sv(s.s)} // Save the global LFP for column 1. sprint(s.s,"data/%s_%s_LFP.nqs",$s1,col[CDX].name) {nqLFP[CDX].tog("DB") nqLFP[CDX].sv(s.s)} // Save the nqa table. {sprint(s.s,"data/%s_nqa.nqs",$s1) nqa.tog("DB") nqa.sv(s.s)} // Save an nq for the average synaptic weight changes. if(syDT) { nq = new NQS("t","EStoEMavgwtgn") nq.setcol("t",lssyavg[ES][EM].o(0)) nq.setcol("EStoEMavgwtgn",lssyavg[ES][EM].o(1)) sprint(s.s,"data/%s_EStoEMavgwtgn.nqs",$s1) {nq.tog("DB") nq.sv(s.s)} nqsdel(nq) } /* {sprint(s.s,"/u/samn/intfstdp/data/%s_snq.nqs",$s1) snq.tog("DB") snq.sv(s.s)} if(nqrat!=nil) { {sprint(s.s,"/u/samn/intfstdp/data/%s_nqrat.nqs",$s1) nqrat.tog("DB") nqrat.sv(s.s)} } if(mynqp.size>0) { {sprint(s.s,"/u/samn/intfstdp/data/%s_mynqp.nqs",$s1) mynqp.tog("DB") mynqp.sv(s.s)} } {nqsdel(wgnq) wgnq=mkwgnq(col) sprint(s.s,"/u/samn/intfstdp/data/%s_wgnq.nqs",strv) wgnq.sv(s.s)} */ } //* myrunsv(simstr) - run & save output proc myrunsv () { myrun() mysv($s1) } //* mytrainrunsv(simstr,type[,iters,numlevels/numlocations,dur,seed,savew]) - run with training and save weights // type specifies training method: -2 == NRTrain, -1 == RandTrain, 0==IterTrain, 1==IterTrain2D // when savew is specified, save weights every savew iteration in IterTrain // seed specifies random seed for use in RandTrain // when using type==-2:NRTrain $s1==strv,$3==noisemin,$4==noisemax,$5==noisedec,$6==dur proc mytrainrunsv () { local iters,nl,dur,ty,se,noisemin,noisemax,noisedec,savew localobj str str=new String2() ty=$2 // type of training if(ty!=-2) { if(numarg()>2) iters=$3 else iters=100 // # of iterations at each location if(numarg()>3) nl=$4 else nl=15 // # of levels for iterative training or # of locations for random training if(numarg()>4) dur=$5 else dur=10e3 // duration for each subiteration if(numarg()>5) se=$6 else se=213951 // random seed for RandTrain - determines starting locations if(numarg()>6) savew=$7 else savew=0 } else { noisemin=$3 noisemax=$4 noisedec=$5 dur=$6 } sprint(str.s,"data/%s_",$s1) // base path for output files if(ty == -2) { NRTrain(noisemin,noisemax,noisedec,dur) } else if(ty == -1) { RandTrain(nl,iters,dur,se) // training with randomized start positions } else if(ty==1) { IterTrain2D(iters,nl,dur) // 2D iterative train } else IterTrain(iters,nl,dur,savew) // 1D iterative train {nqsdel(nq[0]) nq[0]=mkwgnq(col[0]) sprint(str.t,"%s_wgnq_A1.nqs",str.s) nq[0].sv(str.t)} // save output print "saved ", str.t {nqsdel(nq[1]) nq[1]=getplastnq(col[0]) sprint(str.t,"%s_plastnq_A2.nqs",str.s) nq[1].sv(str.t)} print "saved ", str.t } //* mytestrunsv(simstr[,iters,numlevels,dur,twod,skipc,incvrse,svspks]) - run with training and save weights // iff skipc==1 , skip control. incvrse controls the random seeds used in IterTest (not used in IterTest2D). // see IterTest for more details. svspks - save the snq spike NQS for each subiteration of IterTest? uses // strv and iter,subiter,etc. information for the output filename. proc mytestrunsv () { local iters,nl,dur,twod,c,skipc,incvrse,svspks localobj str,nq DoLearn = syDT = 0 str=new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s__plastnq_A2.nqs",str.s) nq=new NQS(str.t) setplastnq(nq,col[0]) // this loads the learned weights nqsdel(nq) print "loaded weights from ", str.t if(numarg()>1) iters=$2 else iters=1 if(numarg()>2) nl=$3 else nl=15 if(numarg()>3) dur=$4 else dur=10e3 if(numarg()>4) twod=$5 else twod=0 if(numarg()>5) skipc=$6 else skipc=0 if(numarg()>6) incvrse=$7 else incvrse=0 if(numarg()>7) svspks=$8 else svspks=0 for c=0,1 { if(skipc && c==1) continue if(twod) { nq=IterTest2D(iters,nl,dur,c) if(HoldStill) addhyperrcols(nq) // add the hypothetical moves if running with HoldStill==1 if(c==0) sprint(str.t,"%s_itertest2D_A3.nqs",str.s) else sprint(str.t,"%s_itertest2D_control_A4.nqs",str.s) } else { nq=IterTest(iters,nl,dur,c,incvrse,svspks) if(c==0) sprint(str.t,"%s_itertest1D_A3.nqs",str.s) else sprint(str.t,"%s_itertest1D_control_A4.nqs",str.s) } nq.sv(str.t) print "saved ", str.t nqsdel(nq) } } // save plasticity proc saveplast () {localobj nq strdef str nq=getplastnq(col[0]) sprint(str,"%s_plastnq.nqs",filestem) nq.sv(str) } proc saveweights () {localobj nq strdef outcon,outsyn sprint(outcon,"%s_train-con.nqs",filestem) // Store the connectivity information (NQS version) sprint(outsyn,"%s_train-syn.nqs",filestem) // Store the synaptic changes (NQS version) print "Saving nqs with cell connectivity..." col[0].connsnq.sv(outcon) // assume 1 column for the time being (0) print "Saving nqs with synaptic changes ..." nqsy.sv(outsyn) } //* loadplastwam(simstr) - load weights to run sim and send trajectory in real.time to WAM // eg. call using: loadplastwam("12jun14.06_inputseed_4321_dvseed_534023_targid_11_") proc loadplast () {localobj str,nq load_file("load.hoc") DoLearn = syDT = 0 str=new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s_plastnq.nqs",str.s) nq=new NQS(str.t) setplastnq(nq,col[0]) // this loads the learned weights nqsdel(nq) print "loaded weights from ", str.t } // loadnqa(batchsim, param1, param2, iseed, wseed) // eg. loadnqa(13sep12_sim1, 150, 2, 1235, 120456) obfunc loadnqa () { localobj str,nqa str = new String2() sprint(str.s,"data/%s",$s1) sprint(str.t,"%s/p1-%s_p2-%s_i-%s_w-%s_test-nqa.nqs",str.s, $s2, $s3, $s4,$s5) nqa = new NQS(str.t) return nqa } proc loadWeightsPrincipe() {localobj nqtemp, filename // load weights of trained network nqtemp = new NQS($s1) setplastnq(nqtemp,col[0]) nqsdel(nqtemp) } // plotTraj(tstop, targid) - plots angular and xy trajectory -- need to load nqa first proc plotTraj () { // set arm lengths -- needed for plotting target armLen[0] = 0.4634 - 0.173 // elbow - shoulder from MSM; previously, 0.5*(0.55) // shoulder to elbow (check if ms = wam length !) armLen[1] = 0.7169 - 0.4634 // radioulnar - elbow from MSM; previously, 0.5*(0.3+0.06+0.095) // elbow to center of hand = elbow to wrist + wrist length + hand length/2 (check if ms = wam legth) // set input variables tstop = $1 setTargByID($2) // draw x-y traj g=new Graph() ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) drxytraj() } /* --------------------------------------------------*/ /* MS ARM FUNCTIONS (SALVA) */ /* ---------------------------------------------------*/ //* initBeforeRun () - required initialization prior to running msarm sim proc initBeforeRun () { // initialization sAng[0] = sAng0 sAng[1] = sAng1 initarm() // ? mkaid() } func afterRun () { // close sockets sprint(tstr,"axf.closeSavePlot(%f, %f, '%s')",t/1000, aDT, filestem) // commented out because got error when running main.hoc by itself (filestem not found) -- fix!! //sprint(tstr,"axf.closeSavePlot(%f, %f)",t/1000, aDT) nrnpython(tstr) print "Closing sockets..." return pyobj.axf.getPacketLoss() // return 1 if there has been packet loss -- so can discard results } //* msrun () - musculoskeletal arm model single run proc msrun () { local i localobj xo initBeforeRun() run() // Do the normal run. CDX=0 // select column1 pravgrates() // Show average firing rates for each column. initMyNQs() // Load the analysis tables // plot raster gg() drit(0, tstop) grlines() // plot error and RL signal drerrRL() // if syDT>0, record and plot all of the desired synaptic weights. if(syDT) { mkavgsyvst(nqsy) plotavgsyvst() } // plot motor command map (not obtained properly -- includes noise) //drMCMDmapnq(MSMCMDmapnq()) } //* singleTrain () proc singleTrain () { local i localobj xo //**************** // Train stage //**************** // sim params tstop=mytstop=htmax= 10 *1e3 // sim time syDT = 20 // dt for recording synaptic weights into nqsy -- only used when syDT>0 syCTYP = 2 // 1=only ES->EM ; 2 = all connections // set joint angles starting post sAng0 = 0.62 // starting shoulder and elbow angles sAng1 = 1.53 //1.57 // set target targid = 9 // set training params // learning params minRLerrchangeLTP = 0.001// minimum error change visible to RL algorithm for LTP (units in Cartesian coordinates) minRLerrchangeLTD = 0.001 // minimum error change visible to RL algorithm for LTD (units in Cartesian coordinates) DoLearn= 4 // learning mode errTY= ANGERR//XYERR // type of error - either XYERR or ANGERR // noise params EMNoiseRate=300 //sgrhzEE) // rate of noise inputs to EM cells EMNoiseMuscleGroup= 0 // alternate muscle group (-1=no alternation; initial muscle: 0=shext; 1=shflex ; 2=elext; 3=elflex) muscleNoiseChangeDT = 500 // how often to alternate stim to different muscles AdaptNoise=0 // whether to adapt noise StuckCount=2 // number of periods where arm doesn't improve and should adapt noise EMNoiseRateInc=50 // rate by which to increase noise rate when arm gets stuck EMNoiseRateDec=25 // rate by which to decrease noise rate when arm gets stuck EMNoiseRateMax=3e3 // rate of noise inputs to EM cells EMNoiseRateMin=50 // rate of noise inputs to EM cells // run sim initBeforeRun() run() // Do the normal run. //iters=1 nl=1 //IterTrain2D(iters,nl,tstop) // show results CDX=0 // select column1 pravgrates() // Show average firing rates for each column. initMyNQs() // Load the analysis tables // plot raster gg() drit(0, tstop) grlines() // plot error and RL signal drerrRL() // if syDT>0, record and plot all of the desired synaptic weights. if(syDT) { mkavgsyvst(nqsy) plotavgsyvst() } type = 1 } //* singleTest () proc singleTest () {local i localobj xo //**************** // Test stage //**************** // sim params tstop=mytstop=htmax= 10 *1e3 // sim time syDT = 0 // dt for recording synaptic weights into nqsy -- only used when syDT>0 syCTYP = 1 // 1=only ES->EM ; 2 = all connections // set joint angles starting post sAng0 = 0.62 // starting shoulder and elbow angles sAng1 = 1.53 //1.57 // set training params // learning params (learning turned off) DoLearn= 0 // learning mode //errTY= XYERR // type of error - either XYERR or ANGERR // noise params (reduced noise after training) EMNoiseRate=0 //sgrhzEE) // rate of noise inputs to EM cells EMNoiseMuscleGroup= -1 // alternate muscle group (-1=no alternation; initial muscle: 0=shext; 1=shflex ; 2=elext; 3=elflex) muscleNoiseChangeDT = 0 // how often to alternate stim to different muscles AdaptNoise=0 // whether to adapt noise StuckCount=2 // number of periods where arm doesn't improve and should adapt noise EMNoiseRateInc=50 // rate by which to increase noise rate when arm gets stuck EMNoiseRateDec=25 // rate by which to decrease noise rate when arm gets stuck EMNoiseRateMax=3e3 // rate of noise inputs to EM cells EMNoiseRateMin=50 // rate of noise inputs to EM cells // run sim initBeforeRun() run() // Do the normal run. // {iters=1 nl=8 nqiter2d=IterTest2D(iters,nl,tstop)} //addhyperrcols(nqiter2d) -- not working with msarm // show results CDX=0 // select column1 pravgrates() // Show average firing rates for each column. initMyNQs() // Load the analysis tables // plot raster gg() drit(0, tstop/1e3) grlines() // plot error and RL signal drerrRL() // draw elbow and shoulder traj vs time g=new Graph() g.size(0,tstop,-1,4) drshouldertrajectory() drelbowtrajectory() // draw x-y traj g=new Graph() ln=armLen[0]+armLen[1] g.size(-ln,ln,-ln,ln) drxytraj() // draw vector field - not working with msarm // drxyvecfield(nqiter2d) // draw motor command map - not working yet -- need to mapping between joint angles and muscle lengths // drMCMDmapnq(MSMCMDmapnq2()) // if syDT>0, record and plot all of the desired synaptic weights. if(syDT) { mkavgsyvst(nqsy) plotavgsyvst() } } /* --------------------------------------------------*/ /* FUNCTION CALLS (ONLY ONCE)*/ /* ---------------------------------------------------*/ mkmyTYP() assignEM() recE() mkaid() if(DoAnim) gg() LearnOFF() // start with no learning