ttxSoma = 0 // simulate 20nM TTX in bath? 0 = no; 1 = yes celsius = 35 v_init = -70 global_ra=200.00 // internal resistivity in ohm-cm Cm=1.5 // specific membrane capacitance in uF/cm^2 Cmy=0.075 // capacitance in myelin Rm=40000 // specific membrane resistivity in ohm-cm^2 Rn=50 // nodal resistivity Vleak=-66 // leak reversal -66 in Cs+ Vrest=-70 // resting potential -60 in control, -66 in Cs+ ttxScale = 0.5 // amount that 20 nM TTX scales the available Na conductance; 1=no block; 0 = complete block spinelimit=100 // distance beyond which to modify for spines spinefactor=2.0 // factor by which to change passive properties gnainit0 = 0.042 // Na conductance at soma gnaslope0 = 0.000025 // Na channel density decay per um gnabar=0.042 // sodium conductance gnode=0 //40.0 // sodium conductance at a node; MSC switched this setgk = .036 // A-type potassium starting density, used in init_bday.hoc setokslope = 0 // slope of A-type potassium conductance along individual oblique branches. set to 0 in all simulations gcad = 0.00125 // L-type Ca density, from Poirazi et al., 2003 caslope = 0 gkdr=0.040 // delayed rectifier density gkap=setgk // proximal A-type potassium starting density gkad=setgk // distal A-type potassium starting density dlimit=300 // cut-off for increase of A-type density dprox=50 // distance to switch from proximal to distal type dslope=0.01 // slope of A-type density okslope = setokslope // oblique potassium channel gradient okmax = .5 // max potassium channel conductance ampaWeight = 0.00018 // in uS; Jarsky et al., 2005 nmdaWeight = 0.00018 // in uS theSeed = 1 // seed of random number generator numSyn = 150 // number of synapses slowInact = 0 // amount of slow inactivation. 1 = no slow inact; 0 = complete slow inact // gnaTuft0 and gnaTuftS are not used gnaTuft0 = 0.04 // initial VGNaC denisty in the tuft gnaTuftS = 0.00002 // slope of VGNaC density in the tuft