TITLE L-calcium channel : L-type calcium channel with [Ca]i inactivation : from Jaffe, D. B., Ross, W. N., Lisman, J. E., Laser-Ross, N., Miyakawa, H., and Johnston, D. A. A model for dendritic Ca2 : accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J. Neurophysiol. 71:1O65-1077 1994. : conduction density estimate of 50-200 pS/mu2; 0.0025 S/cm2 (5-20 channels of 10 each) : M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3 : hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). : adapted from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=3263&file=\ca3_db\cal2.mod : this version from https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148094&file=\kv72-R213QW-mutations\cal2.mod : Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype : correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:4386-4391 UNITS { (mA) = (milliamp) (mV) = (millivolt) FARADAY = 96520 (coul) R = 8.3134 (joule/degC) KTOMV = .0853 (mV/degC) } PARAMETER { v (mV) celsius (degC) gcalbar=.003 (mho/cm2) ki=.001 (mM) cai = 50.e-6 (mM) cao = 2 (mM) q10 = 5 mmin=0.2 tfa = 1 a0m =0.1 zetam = 2 vhalfm = 4 gmm=0.1 ggk } NEURON { SUFFIX cal USEION ca READ cai,cao WRITE ica RANGE gcalbar,cai, ica, gcal, ggk RANGE minf,tau } STATE { m } ASSIGNED { ica (mA/cm2) gcal (mho/cm2) minf tau (ms) } INITIAL { rate(v) m = minf gcal = gcalbar*m*m*h2(cai) ggk=ghk(v,cai,cao) ica = gcal*ggk } BREAKPOINT { SOLVE state METHOD cnexp gcal = gcalbar*m*m*h2(cai) ggk=ghk(v,cai,cao) ica = gcal*ggk } FUNCTION h2(cai(mM)) { h2 = ki/(ki+cai) } FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) { LOCAL nu,f f = KTF(celsius)/2 nu = v/f ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu) } FUNCTION KTF(celsius (DegC)) (mV) { KTF = ((25./293.15)*(celsius + 273.15)) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } FUNCTION alp(v(mV)) (1/ms) { alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0) } FUNCTION bet(v(mV)) (1/ms) { bet = 0.29*exp(-v/10.86) } FUNCTION alpmt(v(mV)) { alpmt = exp(0.0378*zetam*(v-vhalfm)) } FUNCTION betmt(v(mV)) { betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) } DERIVATIVE state { rate(v) m' = (minf - m)/tau } PROCEDURE rate(v (mV)) { :callable from hoc LOCAL a, b, qt qt=q10^((celsius-25)/10) a = alp(v) b = 1/((a + bet(v))) minf = a*b tau = betmt(v)/(qt*a0m*(1+alpmt(v))) if (tau