:Comment : mtau deduced from text (said to be 6 times faster than for NaTa) :Comment : so I used the equations from NaT and multiplied by 6 :Reference : Modeled according to kinetics derived from Magistretti & Alonso 1999 :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21 NEURON { SUFFIX Nap_Et2 USEION na READ ena WRITE ina RANGE gNap_Et2bar, gNap_Et2, ina, offm, slom, offma, offmb, sloma, slomb, tauma, taumb, taummax, offh, sloh, offha, offhb, sloha, slohb, tauha, tauhb, tauhmax } UNITS { (S) = (siemens) (mV) = (millivolt) (mA) = (milliamp) } PARAMETER { gNap_Et2bar = 0.00001 (S/cm2) offm = -52.6 (mV) slom = 4.6 (mV) offma = -38 (mV) offmb = -38 (mV) sloma = 6.0 (mV) slomb = 6.0 (mV) tauma = 5.49451 taumb = 8.06452 taummax = 6.0 (ms) offh = -48.8 (mV) sloh = 10.0 (mV) offha = -17 (mV) offhb = -64.4 (mV) sloha = 4.63 (mV) slohb = 2.63 (mV) tauha = 347222.2 tauhb = 144092.2 tauhmax = 1.0 (ms) } ASSIGNED { v (mV) ena (mV) ina (mA/cm2) gNap_Et2 (S/cm2) mInf mTau mAlpha mBeta hInf hTau hAlpha hBeta } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp gNap_Et2 = gNap_Et2bar*m*m*m*h ina = gNap_Et2*(v-ena) } DERIVATIVE states { rates() m' = (mInf-m)/mTau h' = (hInf-h)/hTau } INITIAL{ rates() m = mInf h = hInf } PROCEDURE rates(){ LOCAL qt qt = 2.3^((34-21)/10) UNITSOFF mInf = 1.0/(1+exp((offm-v)/slom)) if(v == offma){ v = v+0.0001 } if(v == offmb){ v = v+0.0001 } mAlpha = -(offma-v)/(1-(exp((offma-v)/sloma)))/tauma mBeta = (offmb-v)/(1-(exp(-(offmb-v)/slomb)))/taumb mTau = taummax*(1/(mAlpha + mBeta))/qt if(v == offha){ v = v + 0.0001 } if(v == offhb){ v = v+0.0001 } hInf = 1.0/(1+exp(-(offh-v)/sloh)) hAlpha = (offha-v) / (1 - exp(-(offha-v)/sloha))/tauha hBeta = -(offhb-v) / (1 - exp((offhb-v)/slohb))/tauhb hTau = tauhmax*(1/(hAlpha + hBeta))/qt UNITSON }