COMMENT Kinetic model of HCN2 channel gating from Wang et al 2002. In this model channel opening is coupled to a change in the affinity of the cyclic nucleotide binding domain for cAMP which is manifest as a shift in the activation curve toward more positive potentials. This model explains the slow activation kinetics of Ih associated with low concentrations of cAMP. For further details email Matt Nolan at mfnolan@fido.cpmc.columbia.edu. Reference Wang J., Chen S., Nolan M.F. and Siegelbaum S.A. (2002). Activity-dependent regulation of HCN pacemaker channels by cyclicAMP: signalling through dynamic allosteric coupling. Neuron 36, 1-20. ENDCOMMENT NEURON { SUFFIX hcn2 NONSPECIFIC_CURRENT i RANGE i, ehcn, g, gbar USEION a READ ai VALENCE 0 } UNITS { (mV) = (millivolt) (molar) = (1/liter) (mM) = (millimolar) } PARAMETER { gbar = 1 (millimho/cm2) ehcn = -40 (mV) a0 = 0.0015 (/ms) : parameters for alpha and beta b0 = 0.02 (/ms) ah = -135.7 (mV) bh = -99.7 (mV) ac = -0.155 (/mV) bc = 0.144 (/mV) aa0 = 0.0067 (/ms) : parameters for alphaa and betaa ba0 = 0.014 (/ms) aah = -142.28 (mV) bah = -83.5 (mV) aac = -0.075 (/mV) bac = 0.144 (/mV) kon = 3085.7 (/mM-ms) : cyclic AMP binding parameters koff = 0.000044857 (/ms) b = 80 bf = 8.94 ai (millimolar) : concentration cyclic AMP gca = 1 : relative conductance of the bound state shift = 0 (mV) : shift in voltage dependence q10v = 4 : q10 value from Magee 1998 q10a = 1.5 : estimated q10 for the cAMP binding reaction celsius (degC) } ASSIGNED { v (mV) g (millimho/cm2) i (milliamp/cm2) alpha (/ms) beta (/ms) alphaa (/ms) betaa (/ms) } STATE { c cac o cao } INITIAL { SOLVE kin STEADYSTATE sparse } BREAKPOINT { SOLVE kin METHOD sparse g = gbar*(o + cao*gca) i = g*(v-ehcn)*(1e-3) } KINETIC kin { LOCAL qa qa = q10a^((celsius-22 (degC))/10 (degC)) rates(v) ~ c <-> o (alpha, beta) ~ c <-> cac (kon*qa*ai/bf,koff*qa*b/bf) ~ o <-> cao (kon*qa*ai, koff*qa) ~ cac <-> cao (alphaa, betaa) CONSERVE c + cac + o + cao = 1 } PROCEDURE rates(v(mV)) { LOCAL qv qv = q10v^((celsius-22 (degC))/10 (degC)) alpha = a0*qv / (1 + exp(-(v-ah-shift)*ac)) beta = b0*qv / (1 + exp(-(v-bh-shift)*bc)) alphaa = aa0*qv / (1 + exp(-(v-aah-shift)*aac)) betaa = ba0*qv / (1 + exp(-(v-bah-shift)*bac)) }